GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Thoms, Silke; Karitter, Pascal; Bischof, Kai (2019): Ocean acidification and high irradiance stimulate growth of the Antarctic cryptophyte Geminigera cryophila. Biogeosciences, 16, 2997–3008, https://doi.org/10.5194/bg-2019-97
    Publication Date: 2024-07-19
    Description: Ecophysiological studies on Antarctic cryptophytes to assess whether climatic changes such as ocean acidification and enhanced stratification affect their growth in Antarctic coastal waters in the future are lacking so far. This is the first study that investigates the combined effects of the increasing availability of pCO2 (400 and 1000 μatm) and irradiance (20, 200 and 500 μmol photons m-2 s-1) on growth, elemental composition and photo-physiology of the Antarctic cryptophyte Geminigera cryophila. Under ambient pCO2, this species was characterized by a pronounced sensitivity to increasing irradiance with complete growth inhibition at the highest light intensity. Interestingly, when grown under high pCO2 this negative light effect vanished, and it reached the highest rates of growth and particulate organic carbon production at the highest irradiance compared to the other tested experimental conditions. Our results for G. cryophila reveal beneficial effects of ocean acidification in conjunction with enhanced irradiance on growth and photosynthesis. Hence, cryptophytes such as G. cryophila may be potential winners of climate change, potentially thriving better in more stratified and acidic coastal waters and contributing in higher abundance to future phytoplankton assemblages of coastal Antarctic waters.
    Keywords: Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbon, organic, particulate, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Connectivity between photosystem II; Connectivity between photosystem II, standard deviation; cryptophytes; Electron transport rate, absolute; Electron transport rate, absolute, standard deviation; Functional absorption cross sections of photosystem II reaction centers; Functional absorption cross sections of photosystem II reaction centers, standard deviation; Functional photosystem II reaction centers, per cell; Functional photosystem II reaction centers, standard deviation; Growth rate, standard deviation; irradiance; Irradiance; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Nitrogen, organic, particulate, per cell; Nitrogen, organic, particulate, per cell, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; Ocean acidification; Particulate organic carbon, production, standard deviation; Particulate organic nitrogen production, standard deviation; Phytoplankton growth rate; Production of particulate organic nitrogen; Recovery; Registration number of species; Re-oxidation time of the Qa acceptor; Re-oxidation time of the Qa acceptor, standard deviation; Southern Ocean; Species; Standard deviation; Treatment: light intensity; Treatment: partial pressure of carbon dioxide; Type; Uniform resource locator/link to reference
    Type: dataset
    Format: text/tab-separated-values, 640 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...