GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McMinn, Andrew; Müller, Marius N; Martin, Andrew; Ugalde, Sarah C; Lee, Shihong; Castrisios, Katerina; Ryan, Ken G (2017): Effects of CO2 concentration on a late summer surface sea ice community. Marine Biology, 164(4), https://doi.org/10.1007/s00227-017-3102-4
    Publication Date: 2024-03-15
    Description: Annual fast ice at Scott Base (Antarctica) in late summer contained a high biomass surface community of mixed phytoflagellates, dominated by the dinoflagellate, Polarella glacialis. At this time of the year, ice temperatures rise close to melting point and salinities drop to less than 20. At the same time, pH levels can rise above 9 and nutrients can become limiting. In January 2014, the sea ice microbial community from the top 30 cm of the ice was exposed to a gradient of pH and CO2 (5 treatments) that ranged from 8.87 to 7.12 and 5-215 µmol CO2 kg?1, respectively, and incubated in situ. While growth rates were reduced at the highest and lowest pH, the differences were not significant. Likewise, there were no significant differences in maximum quantum yield of PSII (Fv/Fm) or relative maximum electron transfer rates (rETRmax) among treatments. In a parallel experiment, a CO2 gradient of 26-230 µmol CO2 kg?1 (5 treatments) was tested, keeping pH constant. In this experiment, growth rates increased by approximately 40% with increasing CO2, although differences among treatments were not significant.. As in the previous experiment, there was no significant response in Fv/Fm or rETRmax. A synchronous grazing dilution experiment found grazing rates to be inconclusive These results suggest that the summer sea ice brine communities were not limited by in situ CO2 concentrations and were not adversely affected by pH values down to 7.1.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Biovolume; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume, standard deviation; Cell counts, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Coast and continental shelf; Entire community; EXP; Experiment; Experiment duration; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Index; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; McMurdo_Sound_experiment; Number of cells; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Polar; Primary production/Photosynthesis; Salinity; Silicate; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 430 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...