GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Biswas, Haimanti; Jie, Jin; Li, Ying; Zhang, Guosen; Zhu, Zhuoyi; Wu, Ying; Zhang, Guoling; Li, Yanwei; Liu, Sumei; Zhang, Jing (2015): Response of a natural phytoplankton community from the Qingdao coast (Yellow Sea, China) to variable CO2 levels over a short-term incubation experiment. Current Science, 108(10), 1901-1909, https://www.currentscience.ac.in/Volumes/108/10/1901.pdf
    Publication Date: 2024-03-22
    Description: Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria, heterotrophic; Bacteria, heterotrophic, standard deviation; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, dissolved, standard deviation; Carbon, organic, dissolved + particulate, net production; Carbon, organic, dissolved + particulate, net production, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbon/Phosphorus ratio; Carbon/Phosphorus ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll a/Chlorophyll b ratio; Chlorophyll a/particulate organic carbon ratio; Chlorophyll a/particulate organic carbon ratio, standard deviation; Coast and continental shelf; Community composition and diversity; Consumption of carbon, inorganic, dissolved; Consumption of carbon, inorganic, dissolved, standard deviation; Diatoxanthin index; Diatoxanthin index, standard deviation; Dissolved inorganic nitrogen, uptake; Dissolved inorganic nitrogen, uptake, standard deviation; Entire community; Fucoxanthin/chlorophyll a ratio; Fucoxanthin/chlorophyll a ratio, standard devitation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Lutein/chlorophyll a ratio; Lutein/chlorophyll a ratio, standard deviation; Neoxanthin/chlorophyll a ratio; Neoxanthin/chlorophyll a ratio, standard deviation; Nitrogen, inorganic, dissolved; Nitrogen, inorganic, dissolved, standard deviation; Nitrogen, inorganic, dissolved/Phosphorus, inorganic, dissolved ratio; Nitrogen, inorganic, dissolved/Phosphorus, inorganic, dissolved ratio, standard deviation; Nitrogen, organic, particulate; Nitrogen, organic, particulate, standard deviation; Nitrogen/Phosphorus ratio; Nitrogen/Phosphorus ratio, standard deviation; Nitrogen/Phosphorus uptake ratio; Nitrogen/Phosphorus uptake ratio, standard deviation; Nitrogen/Silicon ratio; Nitrogen/Silicon ratio, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic phosphorus, standard deviation; Pelagos; pH; Phosphorus, inorganic, dissolved; Phosphorus, inorganic, dissolved, standard deviation; Phosphorus, organic, particulate; Phosphorus uptake; Phosphorus uptake, standard deviation; Picoeukaryotes; Picoeukaryotes, standard deviation; Primary production/Photosynthesis; Salinity; Silicate; Silicate, standard deviation; Silicate uptake; Silicon/Nitrogen uptake ratio; Silicon/Nitrogen uptake ratio, standard deviation; Silicon/phosphorus uptake ratio; Silicon/phosphorus uptake ratio, standard deviation; Silicon uptake, standard deviation; Synechococcus; Synechococcus spp., standard deviation; Temperate; Temperature, water; Treatment; Type; Violaxanthin/antheraxanthin ratio; Violaxanthin/antheraxanthin ratio, standard deviation; Violaxanthin/chlorophyll a ratio; Violaxanthin/chlorophyll a ratio, standard deviation; Violaxanthin/Zeaxanthin ratio; Violaxanthin/Zeaxanthin ratio, standard deviation; δ13C; δ13C, standard deviation; δ15N; δ15N, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 679 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...