GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • The revised minimum subduction initiation age for the Aleutian system is 48 Ma. • The evolution of the arc was characterized by three distinct magmatic pulses. • The types of magmas erupted appear to have changed during the arc evolution. In order to further constrain the timing of the Aleutian Arc initiation as well as its early evolution, an extensive 40Ar/39Ar dating and geochemical (major and selected trace elements) campaign (40 samples) of the lower units of the Aleutian ridge has been carried out on samples dredged from deep fore-arc canyons and rear arc tectonic structures. The new dataset slightly increases the minimum inception age for the Aleutian system, with the two oldest samples dated at 46.1 ± 3.3 Ma and 47.80 ± 0.57 Ma. Both mid Eocene ages were obtained on tholeiitic mafic volcanic rocks from the western section of the arc. The new data also support the occurrence of three distinct periods of enhanced magmatic activity (magmatic pulses) during the pre-Quaternary evolution of the arc (at 38–27, 16–11 and 6–0 Ma), as previously suggested based on a more limited and dominantly subaerial dataset. Moreover, the data refine the duration of the first pulse of activity, which ended 2 Ma later than previous estimates. The first and last pulses may be associated with rotations of the subducting plates while the second pulse might result from regional tectonic changes. The significant overlap between the age distribution of the submarine and subaerial samples suggests that much of the earlier parts of the arc may have been uplifted and subaerially exposed. The expected crustal growth associated with the pulses is unlikely to have significantly impacted magmatic residence times, since no variation in the degree of differentiation of the rocks can be observed during or after the pulses. On the other hand, the type of magmas erupted may have changed during the arc evolution. Prior to the first pulse, activity appears to have been dominantly tholeiitic. On the other hand, the first pulse was characterized by coeval tholeiitic, transitional and calc-alkaline magmas, with calc-alkaline activity increasing after the first ~3 Ma. Subsequently, a dominantly calc-alkaline period occurred from 29 to 8 Ma, followed by a progressive return of coeval tholeiitic, transitional and calc-alkaline activity. These temporal changes in magma types correspond to likely variations in arc crustal thickness beneath the active front, and could therefore be a response to physical changes of the overriding plate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...