GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 28 (1985), S. 3116-3126 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Whistler mode electron-cyclotron resonance heating (ECRH) has been performed simultaneously with whistler mode electron-cyclotron emission measurements on an axisymmetric magnetic mirror plasma. Results presented include a study of the early plasma startup phase and two instability phases, one believed to be caused by a whistler instability and another by magnetohydrodynamic (MHD) flute instability. Enhanced microwave emission at frequencies below the midplane electron-cyclotron frequency has been correlated with enhanced electron endloss during the whistler instability. Cyclotron emission spectra during the startup phase match predictions for a "sloshing electron'' type distribution based on numerical modeling. This distribution also agrees with anisotropic distributions resulting from electron-cyclotron heating as predicted by Fokker–Planck computer simulations. Experimentally measured heating rates show good agreement with simplified analytical models based on stochastic heating.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...