GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 7519-7530 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The pure rotational spectra of the van der Waals dimers of Ne, Kr, and Xe with CO have been measured using a pulsed jet, cavity microwave Fourier transform spectrometer. All transitions measured were a-type R-branches, obeying selection rules ΔJ=+1, ΔKa=0, and ΔKc=+1. Spectra with Ka=0 were measured for 7 isotopomers of Ne–CO, 13 of Kr–CO, and 17 of Xe–CO. Transitions with Ka=1 were measured for 20Ne–12C16O and 84Kr–12C16O. Rotational constants and centrifugal distortion constants have been determined for all species, as well as the 17O quadrupole coupling constants χaa for 84Kr–13C17O and 20Ne–13C17O. Effective structural parameters have been calculated from the rotational constants. Results derived from the 17O quadrupole coupling constants and centrifugal distortion constants indicate that Ne–CO is considerably more flexible than Ar–CO, Kr–CO, or Xe–CO. Failure to observe hyperfine structure due to the 21Ne, 83Kr, and 131Xe nuclei is discussed in terms of the weak rare gas–CO bonding. Comparisons have been made to the isoelectronic rare gas–N2 van der Waals complexes. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...