GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 5111-5115 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogenated microcrystalline silicon (μc-Si:H) deposited by VHF plasma-enhanced chemical vapor deposition has recently been proven to be fully stable, with respect to light-induced degradation, when adequately used in p-i-n solar cells. Stable solar cells efficiencies of 7.7% have been obtained with single-junction cells, using "midgap'' microcrystalline i-layers, having an optical gap of around 1 eV. In the present paper, the electronic transport properties of such microcrystalline layers are determined, by the steady-state photocarrier grating method (SSPG) and steady-state photoconductivity measurements, in a coplanar configuration. The conditions for the validity of the procedure for determining the ambipolar diffusion length, Lamb, from SSPG measurements (as previously theoretically derived in the context of amorphous silicon) are carefully re-examined and found to hold in these μc-Si:H layers, taking certain additional precautions. Otherwise, e.g., the prevalence of the "lifetime'' regime (as opposed to the "relaxation time'' regime) becomes questionable, in sharp contrast with the case of amorphous semiconductors, where this condition is almost never a problem. For the best layers measured so far, Lamb is about twice as high and the photoconductivity σphoto four times as high in μc-Si:H, when compared to device quality a-Si:H. Until now, the highest values of Lamb found by the authors for μc-Si:H layers are around 3×10−5 cm. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...