GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 836-839 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The emission spectrum from porous silicon (PS) at room temperature was recorded after different delay times ranging from 30 ns to 2.0 ms after pulsed laser excitation by using a gated charge-coupled device camera. In agreement with previous studies, the photoluminescence of porous silicon was found to redshift with delay time in the ns to 100 μs time scale. However, a study of the normalized band shape of the redshifted emission reveals that the emission spectrum retains its band shape rather than giving a distorted band shape that increases in intensity on the longer wavelength side. This behavior suggests that the redshift in the emission spectrum of porous silicon is a result of spectral diffusion resulting from energy transfer among emitters within the inhomogeneously broadened absorption spectrum. Furthermore, on the longer time scale (0.8–2 ms), the much weaker, long wavelength emission spectrum is found to blueshift as the delay time is increased. Two peaks were resolved in the photoluminescence spectrum. One is centered around 650 nm and the other is centered around 750 nm. The photoluminescence at 600 and 800 nm have lifetimes of 0.35 and 0.19 ms, respectively. This observation suggests the existence of two distinct molecular species responsible for the observed photoluminescence in PS. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...