GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Polycrystalline silicon (poly-Si) films grown by ultrahigh-vacuum chemical vapor deposition (UHVCVD) system and then annealed by excimer laser at room temperature have been investigated for the applications in polycrystalline silicon thin-film transistors (poly-Si TFTs). The results showed that the grain size of the laser-annealed poly-Si film decreased with laser energy density when a lower laser energy density below 157.7 mJ/cm2 was used. At about the threshold laser energy density (∼134.5 mJ/cm2), the finest grain structure could be obtained due to the partial melting in the top layer of the film. When the energy density of the excimer laser was larger than the threshold energy density, the large grain growth was initiated. The largest grain structure could be obtained at ∼184 mJ/cm2, while its surface roughness was better than that of the nonannealed UHVCVD poly-Si films. The surface roughening was suggested to arise from the specific melt-regrowth process but not the rapid release of hydrogen or capillary wave mechanism derived from laser-annealed amorphous silicon. By use of the laser-annealed UHVCVD poly-Si films as the active layer, the fabricated poly-Si TFT exhibited a field-effect mobility of 138 cm2/V s, a subthreshold swing of 0.8 V/dec, a threshold voltage of 3.5 V, and an on/off current ratio of ∼106. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...