GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 58 (1996), S. 51-63 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary The sensitivity of the circulation and water mass properties in a global ocean circulation model (OGCM) to the stability dependent vertical mixing parameterisations of Pacanowski and Philander (1981) and Henderson-Sellers (1985) is investigated. The work extends a previous study which examined upper ocean charateristics and mixed layer evolution resulting from these schemes incorporated in the OGCM and made a recommendation as to the appropriateness of the latter scheme for global models. Under the assumption of constant vertical eddy coefficients (the control case), the model climatology displays acceptable values of North Atlantic Deep Water formation, Antarctic Circumpolar Current strength, and Indonesian throughflow but an excessively deep and diffuse pycnocline structure with weak stratification in the deep ocean. It is found that these circulation and water mass properties are sensitive to the choice of parametrisation of vertical mixing and that the two stability dependent schemes are unable to perform satisfactorily over the global domain, instead being better suited to the tropics. Under conditions optimal for representing the tropical current and temperature structure, these schemes result in significant weakening of major currents (particularly, the ACC) and reductions in the rates of deep water formation and poleward heat transports. These deficiencies can only be remedied at the expense of the improvements to the simulation in the tropical part of the domain. The results presented indicate that the suggestions made in the previous study do not extend to situations where the deep ocean, and particularly, the global thermohaline circulation is important.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...