GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 61 (1977), S. 279-298 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Sub-potassic nephelines in the system NaAlSiO4(Ne)-KAlSiO4(Ks) were synthesized under a variety of conditions and studied at room temperature and up to 1000 °C using an X-ray powder diffractometer. At low temperatures they do not have the hexagonal structure determined by Hahn and Buerger (1955) for natural nepheline. Samples with ∼0.7 to 2.5 mole % Ks have an orthorhombic supercell with parameters equivalent to a, √3a, 3c where a and c are Hahn and Buerger structure cell parameters. Nephelines with 0 to ∼0.7% Ks consist of two phases with different c axes; one of these phases has the orthorhombic supercell. Pure-Na nephelines (NaAlSiO4) invert to a hexagonal phase with the Hahn and Buerger structure at 190 °±10 °C; this inversion temperature decreases with increasing Ks and a sample with 0.5% Ks inverts at 170 °±5 °C. The inversion is reversible and is displacive. Another reversible inversion begins at 875 °±10 °C in pure-Na nepheline; this inversion increases in temperature with increasing Ks and a sample with 1.8% Ks begins to invert at 960 °±10 °C. Superstructures with “anomalous” low-temperature cell parameters in sub-potassic nephelines are attributed to reversible collapse of the framework about the larger cation sites which must be occupied by small Na in subpotassic nephelines. Superstructures in natural nephelines are also related to framework collapse at a displacive inversion.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...