GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 15 (1995), S. 1-23 
    ISSN: 1572-8986
    Keywords: Drag force ; evaporating particle ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical expressions are presented for the drag force acting on an evaporating or nonevaporating particle immersed in a plasma flow for the extreme case of free-molecule flow regime and thin plasma .sheath. It is shown that the drag force on a spherical particle is proportional to the square of the particle radius and to the relative velocity between the particle and the bulk plasma at low speed ratios. The existence of a relative velocity between the particle and the plasma results in a nonuniform heat flux distribution with its rnaximum value at the frontal stagnation point of tire sphere. This nonuniform distribution of the local heat fux density causes a nonuniforrn distribution of the local evaporated-mass flux and vapor reaction force around the surface of an evaporating particle, and thus induces an additional force on the particle. Consequently, the drag force acting on art evaporating particle is always greater than that on a nonevaporating one. This additional drag force due to particle evaporation is more significant for nonmetallic particles and for particle materials with lower latent heat of evaporation and lower vapor molecular mass. It increases with increasing plasma temperature and with decreasing gas pressure at the high plasma temperatures associated with appreciable gas ionization. The drag ratio increases with increasing electron/heavy-particle temperature ratio at high electron temperatures for a two-temperature plasma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...