GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0778
    Keywords: alcohol dehydrogenase-I ; deoxyribonucleic acid (DNA) ; human-human hybridoma ; immunoglobulin production stimulating factor (IPSF) ; serum-free culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Alcohol dehydrogenase-I (ADH-I) derived from horse liver stimulated IgM production by human-human hybridoma, HB4C5 cells and lymphocytes. The IPSF activity of ADH-I was suppressed by coexistence of short DNA whose chain length is less than 200 base pairs (bp) and fibrous DNA in a dose-dependent manner. These DNA preparations completely inhibited the IPSF activity at the concentration of 250 μg/ml and 1.0 mg/ml, respectively. DNA sample termed long DNA whose average chain length is 400–7000 bp slightly stimulated IPSF activity at 0.06 μg/ml. However, long DNA suppressed IPSF activity by half at 1.0 mg/ml. The laser confocal microscopic analysis had revealed that ADH-I was incorporated by HB4C5 cells. The uptake of ADH-I was strongly inhibited by short DNA and fibrous DNA. However, long DNA did not suppress the internalization of ADH-I into HB4C5 cells. These findings indicate that short DNA and fibrous DNA depress IPSF activity of ADH-I by inhibiting the internalization of this enzyme. According to the gel-filtration analysis using HPLC, ADH-I did not directly interact with short DNA. It is expected from these findings that short DNA influences HB4C5 cells to suppress the internalization of ADH-I. Moreover, these facts also strongly suggest that ADH-I acts as IPSF after internalization into the cell.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...