GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 4 (1998), S. 301-319 
    ISSN: 1573-1421
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Relatively soon (∼0.2 Ga) after the Earthformed, it is likely that major oceans appeared in ahot (∼100°C) reducing environment where carbondioxide was probably the dominant atmospheric gas,with PCO2, values reaching perhaps in excess of 10atm. During the Hadean Eon between 4.3 and 3.8 Ga BP,major changes in the concentration of atmosphericCO2 and associated temperature changes had aprofound influence on the carbonate geochemistry ofthe Hadean Ocean. Although no rocks are known to havesurvived prior to the Archean Eon, it is stillpossible to calculate approximate values for importantseawater parameters during the Hadean Eon based onother sources of information and reasonableassumptions about processes such as weatheringreactions. Our calculations are based on a linear temperaturechange from 100°C to 70°C and logPCO2 change from 1 to -1.5 over the Hadean Eon. Over this range in temperature and P CO2, theinfluence of T is relatively small, but changes inP CO2 result in large compositional variations inthe carbonate chemistry of Hadean seawater. In theearly Hadean, seawater pH was probably about5.8 ± ∼ 0.2, DIC may have reached close to 130 mM,and alkalinity was perhaps close to 30 mM. By thelate Hadean, seawater pH probably had changed to closeto neutral (∼6.8), and DIC and alkalinity were closerto present-day values. Even large uncertainties inNa+ + Cl-, K+ and Mg2+concentrations produce relatively small uncertaintiesin our calculated values for the carbonic acid system. However, larger uncertainties result from reasonableranges for Ca2+ concentrations and the saturationstate of Hadean seawater with respect to calcite. Our calculations support the hypothesis that acarbonate chemistry of seawater roughly similar tothat of modern oceans could have been acquired veryearly in Earth history. If seawater composition werebuffered by reactions involving carbonates andsilicates, then the composition of late Hadean-earlyArchean seawater was not vastly different from that oftoday. Thus, by the conclusion of the Hadean Eon, ifnot before, environmental conditions at the Earth's surface, including temperature and seawatercomposition, were sufficiently equable for theevolution of life, including the Archaebacteria: theextreme halophiles and thermophiles and methanogens.Contrary to the hypothesis of an early Na-bicarbonateocean, our calculations suggest the possibility thatthe early oceans of Earth were a NaCl-dominatedaqueous solution, with somewhat higher DIC andalkalinity concentrations, higher saturation state,and the possibility of lower calcium concentrations.The time course of approach of Hadean seawater to acarbonate composition closer to that of today isdifficult to predict. It is distinctly possible thatthe concentration of calcium in seawater did not reachlevels like that of modern seawater until the latePrecambrian and thus constrained the timing of the"Big Bang" of organic evolution, the emergence of theshelled invertebrates at the beginning of thePhanerozoic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...