GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Oil spills. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (617 pages)
    Edition: 1st ed.
    ISBN: 9783030116057
    DDC: 628.16833
    Language: English
    Note: Intro -- Foreword and Dedication -- References -- Contents -- Part I: Introduction -- Chapter 1: Introduction to the Volume -- 1.1 Background -- 1.2 Introduction to the Volume -- References -- Part II: Physics and Chemistry of Deep Oil Well Blowouts -- Chapter 2: The Importance of Understanding Fundamental Physics and Chemistry of Deep Oil Blowouts -- 2.1 Introduction -- 2.2 The Oil -- 2.3 The Reservoir -- 2.4 Subsurface Release -- 2.5 Early Far-Field Fate -- References -- Chapter 3: Physical and Chemical Properties of Oil and Gas Under Reservoir and Deep-Sea Conditions -- 3.1 Molecular Composition and Physical Properties of Petroleum in Reservoirs -- 3.1.1 Source Dependence, Generation, Accumulation, and Alteration of Petroleum -- 3.1.2 Macondo Well Oil Molecular Characteristics -- 3.2 Physical Properties of Oil Under Deep Ocean Conditions -- 3.2.1 Bubble Point -- 3.2.2 Gas Saturation -- 3.2.3 Density and Swelling -- 3.2.4 Viscosity -- 3.2.5 Diffusivity -- 3.2.6 Interfacial Tension -- 3.3 Modeling Phase Equilibria (Gas-Oil-Water) in Oil Reservoirs and in the Deep Sea and Oil Constituent Partitioning -- 3.3.1 Bubble Point -- 3.3.2 Gas Saturation -- 3.3.3 Density and Swelling -- 3.3.4 Viscosity -- 3.3.5 Diffusivity -- 3.3.6 Interfacial Tension -- 3.4 Summary -- References -- Chapter 4: Jet Formation at the Spill Site and Resulting Droplet Size Distributions -- 4.1 Introduction -- 4.2 Determination of Drop Size Distributions in Laboratory and Field Settings -- 4.2.1 Pilot-Scale Jet Experiments -- 4.2.2 Stirrer Cells -- 4.2.3 DeepSpill: Field Experiment in the Deep Sea -- 4.2.4 Equipment for Field Measurements -- 4.2.5 Critical Review of Datasets -- 4.3 Modelling Approaches -- 4.3.1 Scaling-Based Models Using Dimensionless Numbers -- 4.3.2 Mechanistic Modelling. , 4.3.3 Novel Applications of Energy Dissipation Metrics to Understand Droplet Sizes from Experimental Data -- 4.4 Effects of Deep-Sea Blowout Characteristics -- 4.4.1 Influence of Dissolved Gases on the Droplet Size Distribution -- 4.4.2 Influence of Rapid Pressure Loss at the Wellhead and Phase Changes of the Oil -- 4.5 Capabilities and Limits of Subsea Dispersant Injection -- 4.6 Conclusions and Outlooks -- References -- Chapter 5: Behavior of Rising Droplets and Bubbles: Impact on the Physics of Deep-Sea Blowouts and Oil Fate -- 5.1 Introduction -- 5.2 Correlations for the Rise Velocity of Single Fluid Particles -- 5.3 Gas Bubble Behavior: Theoretical and Experimental Insights -- 5.4 Oil Droplet Behavior: Theoretical and Experimental Insights -- 5.5 How Reservoir and Deep-Sea Conditions Change Everything: Rise Behavior of Live Oil Droplets -- 5.6 Swarm Effects, Mass Transfer, and Gas Hydrates -- 5.7 Conclusion -- References -- Part III: Transport and Degradation of Oil and Gas from Deep Spills -- Chapter 6: The Importance of Understanding Transport and Degradation of Oil and Gasses from Deep-Sea Blowouts -- 6.1 Introduction -- 6.2 How Deep Subsea Spills Differ from Surface Releases -- 6.3 Properties of Oil Related to Fate and Transport -- 6.4 Fate of Oil and Gas: Understanding Where Oil Goes -- 6.5 Fate of Oil and Gas: Understanding the Degradation of Oil Components -- 6.6 Tracing the Fate of Oil in the Deep Sea: The Mass Balance -- References -- Chapter 7: Biodegradation of Petroleum Hydrocarbons in the Deep Sea -- 7.1 Introduction -- 7.2 Biodegradation in the Water Column -- 7.2.1 Rate of Liquid and Gaseous Hydrocarbon Biodegradation in the Water Column -- 7.2.2 Microbial Community Changes During the Spill, Pre-spill, and Post-spill -- 7.2.3 The Influence of Dispersants on Microbial Community and Biodegradation -- 7.3 Biodegradation in Sediments. , 7.3.1 Biodegradation of Petroleum in Marine Sediments (DWH and Other Case Studies) -- 7.3.2 Microbial Community Response in Deep Sea Sediments -- 7.4 Effect of High Pressure on Microbially Mediated Hydrocarbon Degradation -- 7.4.1 Ex Situ Incubations of Enriched Seawater and Sediments -- 7.4.2 Pure Culture Studies -- 7.5 Conclusions -- References -- Chapter 8: Partitioning of Organics Between Oil and Water Phases with and Without the Application of Dispersants -- 8.1 Introduction -- 8.2 Partition Device -- 8.3 Results -- 8.3.1 Partition Ratio Calculations -- 8.3.2 Partition Ratios Measured with the Application of Dispersant -- 8.4 Discussion -- 8.4.1 Effects of Pressure, Temperature, and Alkylation on Partitioning of Organics -- 8.4.2 Equilibrium Partition Ratio Along the Water Column -- 8.4.3 Use of Dispersants as a Spill Response Method -- 8.5 Conclusions -- References -- Chapter 9: Dynamic Coupling of Near-Field and Far-Field Models -- 9.1 Introduction -- 9.2 Models Description and Coupling -- 9.2.1 Near-Field Modeling -- 9.2.2 Far-Field Lagrangian Modeling -- 9.3 Coupled Near-Field and Far-Field Model -- 9.4 The Next Generation of Coupled Near-Field and Far-Field Models: Advancements -- References -- Chapter 10: Effects of Oil Properties and Slick Thickness on Dispersant Field Effectiveness and Oil Fate -- 10.1 Introduction -- 10.2 How Natural or Chemical Dispersion Affects Oil Slick Fate -- 10.3 Influence of Individual Key Parameters on Dispersion and Oil Slick Elongation -- 10.3.1 Main Oil Properties -- 10.3.2 Oil Layer Thickness -- 10.3.3 Initial Slick Size -- 10.3.4 Wind Speed -- 10.3.5 Dispersants -- 10.4 Decision-Making About Application of Chemical Dispersion -- 10.4.1 Effectiveness -- 10.4.2 Effects -- 10.4.2.1 Water Column -- 10.4.2.2 Benthic -- 10.5 Concluding Remarks -- References. , Chapter 11: Far-Field Modeling of a Deep-Sea Blowout: Sensitivity Studies of Initial Conditions, Biodegradation, Sedimentation, and Subsurface Dispersant Injection on Surface Slicks and Oil Plume Concentrations -- 11.1 Far-Field Modeling of Oil Spills -- 11.2 Laboratory Experiments and Observational Data for Numerical Modeling Support -- 11.2.1 Droplet Formation in Deep-Sea Conditions -- 11.2.2 Biodegradation of Hydrocarbons in the Water Column -- 11.2.3 Sediment Analysis -- 11.3 Numerical Simulation Description -- 11.3.1 Modeling and Experimental Setup -- 11.3.2 Suite of Numerical Case Studies -- 11.3.3 Model Output and Post-processing Variables -- 11.4 Modeling Results and Analyses -- 11.4.1 Surface Oil Expression -- 11.4.2 Oil Distribution in the Water Column and SSDI Effect -- 11.4.3 Modeled Oil Residue Sedimentation -- 11.5 Summary -- References -- Part IV: Oil Spill Records in Deep Sea Sediments -- Chapter 12: Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) Events: Learning from the Past to Predict the Future -- 12.1 Defining of Marine Snow: An Operational Approach -- 12.2 Oil-Particle Interactions -- 12.3 Marine "Oil" Snow -- 12.4 MOS: Microhabitat and Entry Point to the Food Web -- 12.5 MOS: Sedimentation and Flocculent Accumulation -- 12.6 MOSSFA: Unique to the Deepwater Horizon Oil Spill? -- 12.7 MOS/MOSSFA: Modeling -- References -- Chapter 13: The Sedimentary Record of MOSSFA Events in the Gulf of Mexico: A Comparison of the Deepwater Horizon (2010) and Ixtoc 1 (1979) Oil Spills -- 13.1 Introduction -- 13.2 What Were the Characteristics of MOSSFA Sedimentary Inputs? -- 13.3 What Was the Extent of MOSSFA on the Seafloor? -- 13.4 What Postdepositional Processes Took Place as a Result of MOSSFA? -- 13.5 Can MOSSFA Be Preserved in the Sedimentary Record? -- 13.6 Conclusions -- References. , Chapter 14: Characterization of the Sedimentation Associated with the Deepwater Horizon Blowout: Depositional Pulse, Initial Response, and Stabilization -- 14.1 Introduction -- 14.2 Approach/Methods -- 14.2.1 Time-Series Approach/High-Resolution Sampling -- 14.2.2 Chronometers: Timing of Deposition -- 14.2.3 Sediment Texture and Composition -- 14.3 Sedimentary Response: Depositional Pulse (2010-2011) -- 14.4 Initial Sedimentary Response: Post-event (2011-2012) -- 14.5 Stabilization/Recovery: Post-event (2013-2016) -- 14.6 Preservation Potential in the Sedimentary Record -- 14.7 Critical Approaches/Methods -- 14.7.1 Rapid Response and Collection of Cores -- 14.7.2 Time Series -- 14.7.3 Sampling Resolution -- 14.7.4 MultiDisciplinary Approach -- 14.8 Conclusions -- References -- Chapter 15: Applications of FTICR-MS in Oil Spill Studies -- 15.1 Introduction -- 15.2 FTICR-MS Basics -- 15.3 Characterization of Source Oils and Weathered Oil Residues Using FTICR-MS -- 15.4 FTICR-MS Characterization of Dissolved Organic Matter and Its Relevance for Oil Spill Assessments -- 15.5 FTICR-MS Characterization of Marine Sediments and Its Relevance for Oil Spill Assessments -- 15.5.1 FTICR-MS Characterization of Marine Oil Snow Associations Generated by Oil Spills -- 15.6 Conclusions and Future Directions -- References -- Chapter 16: Changes in Redox Conditions of Surface Sediments Following the Deepwater Horizon and Ixtoc 1 Events -- 16.1 Introduction -- 16.2 Analytical Approach -- 16.3 Results and Discussion -- 16.3.1 Pre-impact Geochemistry -- 16.3.2 Post-impact: Organic Geochemistry -- 16.3.3 Post-impact: Mn Geochemistry -- 16.3.3.1 Post-impact: Explanation of Double Mn Peak -- 16.3.4 Post-impact: Re Geochemistry -- 16.3.4.1 Post-impact: Evolution of Re Enrichment -- 16.3.5 Post-impact: Ecological Consequences - Benthic Foraminifera. , 16.3.5.1 Post-impact: Ecological Consequences - Benthic Foraminifera (C-13 Depletion).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...