GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Oceanographic instruments. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (410 pages)
    Edition: 1st ed.
    ISBN: 9780128098875
    DDC: 551.46
    Language: English
    Note: Front Cover -- CHALLENGES AND INNOVATIONS IN OCEAN IN SITU SENSORS -- CHALLENGES AND INNOVATIONS IN OCEAN IN SITU SENSORS -- Copyright -- Contents -- List of Contributors -- FOREWORD -- INTRODUCTION -- ABOUT THE BOOK -- AUDIENCE -- CONTENT -- FINAL COMMENTS -- Reference -- Acknowledgments -- 1 - Introduction -- 1.1 Ocean In Situ Sampling and Interfaces With Other Environmental Monitoring Capabilities -- 1.1.1 WHY WE NEED TO UNDERSTAND OUR OCEAN -- 1.1.2 MONITORING OR OBSERVING? -- 1.1.3 WHY IN SITU SAMPLING? -- 1.1.4 SAMPLING STRATEGIES FOR IN SITU MEASUREMENT -- 1.1.4.1 Broad-Scale Environmental Observing Systems -- 1.1.4.1.1 Satellite Sensors -- 1.1.4.1.2 Surface Radar for Waves and Currents -- 1.1.4.1.3 Ocean Acoustics -- 1.1.4.1.4 Simple Models -- 1.1.4.1.5 Complex Models -- 1.1.4.2 Array for Real-Time Geostrophic Oceanography -- 1.1.5 WHAT ARE WE SAMPLING? -- 1.1.5.1 Temperature -- 1.1.5.2 Nitrate -- 1.1.5.3 Salinity -- 1.1.6 WHERE ARE WE SAMPLING? -- 1.1.7 VARIABILITY IN SAMPLE SPACE -- 1.1.8 PLATFORMS FOR SENSORS -- 1.1.8.1 Eulerian or Lagrangian? -- 1.1.8.2 Established Platforms -- 1.1.8.3 Underwater Gliders -- 1.1.8.4 Animal Oceanographers -- 1.1.8.5 Project Loon -- 1.1.9 PROVENANCE -- 1.1.10 THE SENSORS -- 1.1.10.1 Sensor Fouling -- 1.1.11 TECHNOLOGICAL TRAJECTORY AND TRANSACTION COST -- References -- 1.2 Opportunities, Challenges and Requirements of Ocean Observing -- 1.2.1 INTRODUCTION -- 1.2.1.1 Why Do We Need Integrated Ocean Observing? -- 1.2.1.2 History of Ocean Observing -- 1.2.2 TOWARD A SUSTAINED OBSERVING SYSTEM FOR CLIMATE AND BEYOND -- 1.2.2.1 The Framework for Ocean Observing -- 1.2.2.2 The Ocean-Observing Value Chain -- 1.2.3 SUMMARY -- References -- Further Reading -- Glossary -- 2 - Ocean In Situ Sensors: New Developments in Biogeochemistry Sensors -- 2.1 An Autonomous Optical Sensor for High Accuracy pH Measurement. , 2.1.1 INTRODUCTION -- 2.1.2 CONCEPT OF OPERATION -- 2.1.2.1 Optical Chain -- 2.1.2.2 Absorbance Measurement -- 2.1.2.3 Light Source -- 2.1.2.4 PhotoDetectors -- 2.1.2.5 pH Calculation -- 2.1.2.5.1 Temperature Dependance -- 2.1.2.6 Measurement Process -- 2.1.2.7 Short-Term Stability -- 2.1.2.8 Operation Power and Data Storage -- 2.1.2.9 Sensor Status and Assembly Performance -- 2.1.3 FUTURE DIRECTIONS -- Glossary -- References -- 2.2 Challenges and Applications of Underwater Mass Spectrometry -- 2.2.1 INTRODUCTION -- 2.2.2 UNDERWATER MASS SPECTROSCOPY (UMS) CHALLENGES -- 2.2.2.1 Instrument Design Challenges -- 2.2.2.2 Data Challenges -- 2.2.2.2.1 Compound Identification -- 2.2.2.2.2 Calibration -- 2.2.2.2.3 Mass Resolution -- 2.2.2.3 Field Deployment Challenges -- 2.2.3 UNDERWATER MASS SPECTROMETRY APPLICATIONS -- 2.2.4 FUTURE -- References -- 2.3 Nutrients Electrochemical Sensors -- 2.3.1 INTRODUCTION -- 2.3.2 EXPERIMENTAL SECTION -- 2.3.2.1 Chemicals -- 2.3.2.2 Material and Electrochemical Cells -- 2.3.3 RESULTS AND DISCUSSION -- 2.3.3.1 Nitrate -- 2.3.3.2 Phosphate -- 2.3.3.3 Silicate -- 2.3.4 CONCLUSIONS -- Glossary -- Acknowledgments -- References -- APPENDIX: SQUARE WAVE VOLTAMMETRY PRINCIPLE -- 2.4 Microfluidics-Based Sensors: A Lab on a Chip -- 2.4.1 INTRODUCTION -- 2.4.2 IN SITU FLUIDIC SENSING SYSTEMS FOR ENVIRONMENTAL APPLICATIONS SIMILAR TO LAB ON CHIP -- 2.4.3 IN SITU MICROFLUIDICS AND LAB ON A CHIP -- 2.4.4 DEVELOPING IMPACT AND TAKE-UP OF LAB-ON-CHIP TECHNOLOGY -- 2.4.5 CONCLUSIONS -- Glossary -- References -- 3 - Ocean In Situ Sensors: New Developments in Biological Sensors -- 3.1 Plankton Needs and Methods -- 3.1.1 INTRODUCTION -- 3.1.2 METHODS TAKING ADVANTAGE OF OPTICAL PROPERTIES OF PLANKTON -- 3.1.2.1 Measurements of the Inherent Optical Properties of Water -- 3.1.2.2 Measurement of Fluorescence. , 3.1.2.3 Flow Cytometric Approaches -- 3.1.3 CAMERA INSTRUMENTS AND IMAGING ANALYSES -- 3.1.3.1 In Situ Camera Instruments -- 3.1.3.2 Benchtop Imaging Systems -- 3.1.3.3 Image Classification -- 3.1.4 CONCLUSIONS -- Acknowledgments -- References -- 3.2 Surface Plasmon Resonance sensors for oceanography -- 3.2.1 INTRODUCTION -- 3.2.2 PRINCIPLE OF SURFACE PLASMON RESONANCE SENSORS -- 3.2.2.1 Extrinsic Sensors -- 3.2.2.2 Surface Plasmon Resonance Transduction -- 3.2.2.2.1 Principle of Surface Plasmon Resonance -- 3.2.2.2.2 Surface Plasmon Resonance Transducer Configurations -- 3.2.2.2.2.1 ANGULAR INTERROGATION -- 3.2.2.2.2.2 WAVELENGTH INTERROGATION -- 3.2.2.2.2.3 INTENSITY INTERROGATION -- 3.2.2.2.2.4 PHASE INTERROGATION -- 3.2.2.2.3 Sensitivity, Detection Limit, and Resolution -- 3.2.2.2.4 Algorithm for Dip Detection -- 3.2.2.3 Surface Plasmon Resonance as a Molecular Sensor -- 3.2.2.4 Different Detection Formats -- 3.2.2.4.1 Sandwich Assay -- 3.2.2.4.2 Competitive Assay -- 3.2.2.4.3 Inhibition Assay -- 3.2.2.5 Specific Layer and Functionalization -- 3.2.2.6 Fluidic System -- 3.2.3 EXAMPLES OF SURFACE PLASMON RESONANCE SENSOR FOR THE MARINE ENVIRONMENT -- 3.2.3.1 Dissolved Gases -- 3.2.3.2 Trace Metal -- 3.2.3.3 Pollutants -- 3.2.3.4 Seafood -- 3.2.3.5 Organism Detection -- 3.2.4 IN SITU SURFACE PLASMON RESONANCE SENSORS -- 3.2.4.1 Refractive Index Sensors -- 3.2.4.2 Biotoxin Biosensor -- 3.2.5 CONCLUSIONS -- References -- Glossary -- 3.3 Biosensors for Aquaculture and Food Safety -- 3.3.1 INTRODUCTION -- 3.3.2 CURRENTLY AVAILABLE SENSORS AND TECHNIQUES -- 3.3.3 INNOVATION METHODS AND RESULTS -- 3.3.4 CHALLENGES -- 3.3.4.1 Forecasting Harmful Algal Blooms With Biosensors -- 3.3.4.2 Diversity in Toxin Groups Affecting Detection -- 3.3.4.3 Variety of Samples Affected by Toxins -- 3.3.4.4 R& -- D Focus on and Beyond the Analytical Box. , 3.3.4.5 Data Management -- 3.3.5 CONCLUSIONS -- References -- Further Reading -- Glossary -- 4 - Ocean In Situ Sensors Crosscutting Innovations -- 4.1 A New Generation of Interoperable Oceanic Passive Acoustics Sensors With Embedded Processing -- 4.1.1 THE CHALLENGE -- 4.1.1.1 Applications Landscape -- 4.1.1.2 Passive Acoustics Sensor Systems -- 4.1.2 INNOVATIONS -- 4.1.2.1 Introduction -- 4.1.2.2 Technical Requirements -- 4.1.3 SENSOR DEVELOPMENT -- 4.1.3.1 Overview -- 4.1.3.2 Hardware -- 4.1.3.2.1 Calibration -- 4.1.3.2.2 Environmental Testing -- 4.1.3.3 Preprocessing Firmware -- 4.1.3.3.1 Click and Whistle Detectors -- 4.1.3.3.2 Low-Frequency Tonal Sounds -- 4.1.3.3.3 Impulsive Sounds Indicator in 10Hz-10kHz Band -- 4.1.3.3.4 Trends in Third Octave Bands -- 4.1.3.3.5 Noise Band Monitoring -- 4.1.3.4 Interfacing Firmware -- 4.1.4 INTEGRATION, VALIDATION, AND DEMONSTRATION ON VEHICLES -- 4.1.4.1 The PROVOR Float -- 4.1.4.2 The Alseamar Sea Explorer Glider -- 4.1.4.3 The Liquid Robotics Wave Glider -- 4.1.5 CONCLUSION AND FUTURE WORK -- Acknowledgments -- References -- Glossary -- 4.2 Acoustic Telemetry: An Essential Sensor in Ocean-Observing Systems -- 4.2.1 INTRODUCTION -- 4.2.1.1 What Is Acoustic Tracking? -- 4.2.1.2 How Acoustic Tracking Is Applied-What Areas, Species, Questions -- 4.2.2 CHALLENGES -- 4.2.2.1 The Underwater Environment -- 4.2.2.2 Equipment Performance -- 4.2.2.3 Interpretation of Data -- 4.2.3 INNOVATIONS IN ACOUSTIC TELEMETRY -- 4.2.3.1 Mobile Receivers -- 4.2.3.2 Proximity Tags -- 4.2.3.3 Accelerometer Tags -- 4.2.3.4 Predation/Mortality Tags -- 4.2.3.5 Environmental Sensor Tags -- 4.2.3.6 Receiver Advances -- 4.2.4 ANALYTICAL APPROACHES -- 4.2.4.1 Standardizing Methods -- 4.2.4.2 Network Analysis and Other Approaches -- 4.2.4.3 Networks of Receiver Arrays and Data Sharing -- 4.2.5 THE FUTURE OF ACOUSTIC TELEMETRY -- Glossary. , Acknowledgments -- References -- Further Reading -- 4.3 Increasing Reliability: Smart Biofouling Prevention Systems -- 4.3.1 INTRODUCTION -- 4.3.1.1 Why Sensors Should Be Protected From Biofouling -- 4.3.1.2 Biofouling Mechanism: Microfouling and Macrofouling -- 4.3.1.3 Effect on Sensors Measurements -- 4.3.1.4 Real World Experiences and Special Challenges in High-Fouling Environments -- 4.3.1.5 Objectives of Biofouling Protection for Sensors -- 4.3.2 STRATEGIES FOR SENSOR BIOFOULING PROTECTION -- 4.3.2.1 Passive -- 4.3.2.1.1 Antifouling Paints, Fouling-Release Paints -- 4.3.2.1.2 Substrate Selection, Hydrophobicity, Copper Mesh Screen -- 4.3.2.2 Active -- 4.3.2.2.1 Wipers and Pads, Brushes, Water-Jetting, Electrolysis -- 4.3.2.3 Adverse Effects -- 4.3.3 OFF-THE-SHELF SENSOR BIOFOULING PROTECTION -- 4.3.3.1 Wipers, Pads, Brushes -- 4.3.3.2 Copper: Screen, Tape, Cu-Ni Antifouling Guard -- 4.3.3.3 Bleach -- 4.3.3.4 Seawater Electrolysis -- 4.3.3.5 UV Irradiation -- 4.3.3.6 Freshwater -- 4.3.3.7 Optically Clear Coating -- 4.3.3.8 NanoPolymer Coating (e.g., C-Spray) -- 4.3.3.9 Routine Mechanical Maintenance, Vinegar -- 4.3.4 NOVEL TECHNIQUES FOR BIOFOULING PROTECTION OF SENSORS -- 4.3.4.1 Electrolysis on Conductive Layer for Optical Windows -- 4.3.4.2 Biofilm Sensor-Controlled Loop for Optimized Biofouling Protection -- 4.3.5 BIOMIMETICS FOR BIOFOULING CONTROL -- 4.3.6 CONCLUSION AND DISCUSSIONS -- References -- 4.4 Material Advances for Ocean and Coastal Marine Observations -- 4.4.1 OCEAN AND COASTAL MARINE OBSERVATIONS -- 4.4.2 MATERIALS FOR OCEAN OBSERVATION AND SENSORS -- 4.4.2.1 Marine Composites -- 4.4.2.2 Polymer Matrix and Hybrid Composites -- 4.4.2.3 Sensors and Nanotechnology -- 4.4.2.3.1 Nanotubes as Sensors -- 4.4.2.3.2 Conducting Polymers -- 4.4.2.3.3 Nanosensors for Environment -- 4.4.3 BIOFOULING PROTECTION OF SENSORS. , 4.4.4 CORROSION IN OCEAN OBSERVATIONS AND SENSORS.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...