GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Solid state physics --Handbooks, manuals, etc. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (515 pages)
    Edition: 1st ed.
    ISBN: 9783527621002
    DDC: 530.4/16
    Language: English
    Note: Solid-State Photoemission and Related Methods -- Contents -- Preface -- In Memoriam Lars Hedin (1930-2002) -- List of contributors -- 1 Electronic structure theory for ground and excited state properties of materials -- 1.1 Introduction -- 1.2 Density functional theory and the FLAPW method -- 1.2.1 Introduction -- 1.2.2 Density-functional theory -- 1.2.3 The FLAPW basis-set -- 1.3 Electronic structure theory for excited states -- 1.3.1 Band gaps and derivative discontinuities -- 1.3.2 Band gaps and nonlocal potentials -- 1.3.3 Quasiparticle calculations -- 1.3.4 Density functional theory using non-local functionals -- 1.4 Application to semiconductor materials -- 1.4.1 Bulk semiconductor materials -- 1.4.2 Semiconductor/semiconductor interfaces -- 1.4.3 Semiconductor/metal interfaces -- 1.5 Applications of the first-principles FLAPW approach to studies of magnetism -- 1.5.1 Magnetism -- 1.5.2 Magneto-crystalline anisotropy in thin films -- 1.5.3 Higher-order magneto-crystalline anisotropy -- 1.5.4 Magnetostriction -- 1.5.5 Magneto-optical effects -- 1.5.6 Magnetic circular dichroism -- References -- 2 Overview of core and valence photoemission -- 2.1 Introduction -- 2.2 Green function methods -- 2.2.1 Photoemission and the many-body problem -- 2.2.2 Green functions and one-particle Schrödinger equation -- 2.2.3 Elementary excitations in systems of interacting particles -- 2.2.4 The self-energy -- 2.2.5 Independent particle states and related methods -- 2.2.6 Perturbation expansion -- 2.2.7 Diagrams in many-body systems -- 2.2.8 Spectral representation -- 2.2.9 Photocurrent -- 2.3 Three-stepmodel versusone-stepmodel -- 2.4 Golden Rule -- 2.4.1 Linear response in the external field -- 2.4.2 Dipole approximation -- 2.5 Initial state -- 2.5.1 Core levels -- 2.5.2 Valence bands -- 2.6 Final state -- 2.6.1 Direct solution of Schrödinger equation. , 2.6.2 Multiple scattering method -- 2.7 Matrix elements: coreversusvalence levels -- 2.8 Optical effects -- 2.8.1 Resonant photoemission -- 2.8.2 Photoemission by surface optical response fields -- 2.9 Spin effects -- 2.10 Computer codes for photoelectron diffraction and spectroscopy -- References -- 3 General theory of core electron photoemission -- 3.1 Introduction -- 3.2 Theory -- 3.2.1 General considerations -- 3.2.2 A model Hamiltonian with a priori determined parameters -- 3.2.3 Extrinsic and intrinsic losses in core electron photoemission -- 3.2.4 Charge transfer and shake-down satellites -- 3.2.5 Resonant photoemission -- 3.2.6 Phonons and temperature effects -- 3.3 Concluding remarks -- References -- 4 Valence band VUV spectra -- 4.1 Introduction -- 4.2 Electrons at crystal surfaces -- 4.2.1 One-electronapproach -- 4.2.2 Many-electronapproach -- 4.3 Photoelectron spectroscopy -- 4.3.1 Band mapping (peak positions) -- 4.3.2 Electron and hole lifetimes (peak widths) -- 4.3.3 Orbital orientation (peak intensities) -- 4.3.4 EDC spectra (profiles) -- 4.4 Summary -- References -- 5 Angle-resolved photoelectron spectroscopy: From photoemission imaging to spatial resolution -- 5.1 Introduction -- 5.2 Angle-resolved photoemission -- 5.3 Experimental considerations -- 5.4 Photoemission imaging: TiTe2 as a test case -- 5.5 Three-dimensional Fermi surface mapping: NbSe2 -- 5.6 Spatial origin of photoelectrons: GaAs(110) surface states -- 5.7 Angle-resolved photoelectron nanospectroscopy -- 5.8 Conclusions -- References -- 6 Electronic states of magnetic materials -- 6.1 Introduction -- 6.2 Bandstructure of magneticmaterials -- 6.2.1 Mappingof energy bands -- 6.2.2 Ferromagneticmetals -- 6.2.3 Antiferromagnetic metals -- 6.2.4 Magnetic alloys -- 6.3 Magnetic insulators -- 6.3.1 Magnetic superconductors -- 6.3.2 Half-metals. , 6.3.3 Magnetic semiconductors -- 6.4 Phase transitions -- 6.4.1 Ferromagnets -- 6.4.2 Antiferromagnets -- 6.5 Magnetic multilayers -- 6.5.1 Quantumwell states -- 6.5.2 Oscillatory coupling -- 6.6 Magnetoelectronics -- 6.6.1 Giant magnetoresistance (GMR) and spin-polarized tunneling -- 6.6.2 Spin scattering and magnetic doping -- References -- 7 The band structure theory of LEED and photoemission -- 7.1 Introduction -- 7.2 Ultima ratio regnum: the APW method -- 7.2.1 The augmented plane waves formalism -- 7.2.2 Andersen's LAPW -- 7.2.3 The extended LAPW - k·p method -- 7.2.4 Back to plane waves -- 7.3 Electron diffraction in semi-infinite crystals -- 7.3.1 Inverse band structure problem -- 7.3.2 Matchingthe solutions at the crystal surface -- 7.3.3 Embedding -- 7.3.4 Current attenuation and current conservation -- 7.4 Is band structure a legitimate concept at high energies? -- 7.4.1 Target current spectroscopy of NbSe2 -- 7.4.2 Photoemission from the surface state on the Al (100) surface -- References -- 8 Time-resolved two-photon photoemission -- 8.1 Basics of two-photon photoemission -- 8.1.1 Energy diagram -- 8.1.2 Energy-resolvedspectroscopy -- 8.1.3 Time-resolvedmeasurements -- 8.1.4 Variation of photon energy -- 8.1.5 Experimental setup -- 8.2 Theoretical description of two-photon photoemission -- 8.2.1 Coupling betweenelectron and hole -- 8.2.2 Phase coherence -- 8.3 Bulk properties -- 8.3.1 Direct bulk transitions -- 8.3.2 Lifetimes of hot electrons -- 8.4 Surface properties -- 8.4.1 Surface states -- 8.4.2 Image-potential states -- 8.4.3 Adsorbate states -- 8.5 Outlook -- References -- 9 Low-energy (e,2e) spectroscopy -- 9.1 Introduction -- 9.2 Setup and basic concepts -- 9.3 Theory -- 9.3.1 Framework -- 9.3.2 Approximations and computational aspects -- 9.3.3 Selection rules -- 9.4 Prototypical spectra -- 9.5 Electron scattering dynamics. , 9.5.1 Elasticone-electronreflection -- 9.5.2 Pair diffraction and coulomb correlation -- 9.6 Valence electronic structure -- 9.6.1 Surface sensitivity and surface states -- 9.6.2 Symmetry resolution by selectionrules -- 9.7 Spin-polarized (e,2e) spectroscopy -- 9.7.1 Non-magnetic surfaces -- 9.7.2 Ferromagnetic surfaces -- References -- 10 One-photon two-electron transitions at surfaces -- 10.1 Introduction -- 10.2 General considerations -- 10.2.1 The single-particle Green's function -- 10.2.2 The two-particle Green's function -- 10.3 Photo-induced double-electron emission -- 10.3.1 Experimental details -- 10.3.2 Pathways for the electron-pair emission -- 10.4 Numerical realizationandexperimental results -- 10.4.1 Simple model calculations -- 10.4.2 Numerical scheme with a realistic single-particle band structure -- 10.4.3 Numerical results for the angular pair correlation in Cu(001) -- 10.4.4 Energy-correlation functions -- 10.5 Conclusions -- References -- 11 Overview of surface structures -- 11.1 Introduction -- 11.2 Techniques of surface structure determination -- 11.2.1 Diffraction techniques -- 11.2.2 Scattering techniques -- 11.2.3 Microscopic and topographic techniques -- 11.3 Two-dimensional ordering -- 11.3.1 Ordering principles at surfaces -- 11.3.2 Nomenclature -- 11.4 Clean surfaces -- 11.4.1 Bulk-like lattice termination -- 11.4.2 Stepped surfaces -- 11.4.3 Relaxations -- 11.4.4 Reconstruction -- 11.4.5 Surface segregation -- 11.4.6 Quasicrystals -- 11.5 Adsorbate-covered surfaces -- 11.5.1 Physisorption -- 11.5.2 Atomic chemisorption sites and bond lengths -- 11.5.3 Atomic multilayers -- 11.5.4 Molecular adsorption -- 11.5.5 Adsorbate-induced relaxations -- 11.5.6 Adsorbate-induced reconstructions -- 11.5.7 Compound formation and surface segregation -- References. , 12 Angle resolved photoelectron spectroscopy: From traditional to two-dimensional photoelectron spectroscopy -- 12.1 Experiment - semiconductors -- 12.1.1 Photoemission from semiconductor surfaces -- 12.1.1.1 Introduction -- 12.1.1.2 Ordered overlayers on semiconductor surfaces -- 12.1.1.3 Initial stage of oxidation of the Si(111)-(7×7) surface -- 12.2 Two-dimensional photoelectron spectroscopy -- 12.2.1 Two-dimensional photoelectron diffraction stereograph -- 12.2.1.1 Display-type spherical mirror analyzer -- 12.2.1.2 Structure analysis by two-dimensional photoelectron diffraction, holography -- 12.2.1.3 Surface photoelectron diffraction -- 12.2.1.4 Bulk photoelectron diffraction -- 12.2.1.5 Photoelectron holography -- 12.2.1.6 Circularly polarized-light photoelectron diffraction -- 12.2.1.7 Peak rotation and the orbital angular momentum -- 12.2.1.8 Stereograph by circular dichroism in photoelectron angular distribution -- 12.2.1.9 Stereoscopic photographs -- 12.2.1.10 Stereo photograph of atomic arrangement -- 12.2.1.11 Stereomicroscope -- 12.2.2 Two-dimensional photoelectron spectroscopy of valence band -- 12.2.2.1 Photoelectron angular distribution from valence band -- 12.2.2.2 Determination of atomic orbitals composing Fermi surface -- 12.2.2.3 Three dimensional band dispersion of graphite -- References -- 13 Holographic surface crystallography: Substrate as reference -- 13.1 Introduction -- 13.2 Surface crystallography as a structure completion problem -- 13.3 Maximum entropy algorithm for surface crystallography -- 13.3.1 Surface X-ray diffraction -- 13.3.2 Low energy electron diffraction -- 13.4 Discussion and conclusions -- References -- 14 XAFS and related methods: Theoretical techniques -- 14.1 Introduction -- 14.2 Standard one-electron theory of X-ray spectra -- 14.2.1 Theoretical considerations -- 14.2.2 Golden rule. , 14.2.3 Green's Function formalism.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...