GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Tokyo :Springer Japan,
    Keywords: Analytical biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9784431564638
    DDC: 612.01524
    Language: English
    Note: Intro -- Preface -- Contents -- Part I: Overview -- Chapter 1: Metallomics: Integrated Biometal Science -- 1.1 Introduction -- 1.2 Progress of Analytical Atomic Spectrometry -- 1.3 All-Element Present Theory -- 1.4 Chemical Speciation of Trace Metals in Biological Samples -- 1.5 Human Genome Project and the Rapid Rise of Omics Science -- 1.6 Proposal of Metallomics as Integrated Biometal Science-Historical Aspects -- 1.7 International Symposium on Metallomics -- 1.8 Progress of Metallomics Research -- 1.8.1 The Scientific Journal of Metallomics -- 1.8.2 Essentiality and Toxicity of the Elements -- 1.8.3 A Simplified Model of the Biological System -- 1.8.4 Scientific Fields in Trace Metal Science -- 1.8.5 Research Subjects in Metallomics -- 1.9 Summary -- References -- Part II: Analytical Techniques and Strategies Surrounding Metallomics -- Chapter 2: Speciation and Identification of Chalcogen-Containing Metabolites -- 2.1 Introduction -- 2.2 Hyphenated Techniques -- 2.3 Identification of Chalcogen-Containing Metabolites -- 2.3.1 Selenosugars -- 2.3.2 Selenohomolanthionine -- 2.3.3 Selenoneine -- 2.3.4 Selenocyanate -- 2.3.5 Trimethyltelluronium Ion -- 2.3.6 Te-Methyltellurocysteine -- 2.4 Conclusion -- References -- Chapter 3: Visualization of Intracellular Elements Using Scanning X-Ray Fluorescence Microscopy -- 3.1 Imaging Intracellular Elements at the Single-Cell Level Provides New Insights -- 3.2 Scanning X-Ray Fluorescence Microscopy -- 3.2.1 Synchrotron Radiation X-Ray Source -- 3.2.2 X-Ray Focusing Optics -- 3.2.3 Demonstration of SXFM Performance -- 3.3 Applications in Biology and Medicine -- 3.3.1 SXFM Is Now User-Friendly -- 3.3.2 Sample Preparation -- 3.3.3 Basement for Cells -- 3.3.4 Element Array -- 3.3.5 A Cell Line Subjected to Sample Imaging at the Single-Cell Level -- 3.3.6 Clinical Samples. , 3.3.7 Application in Metal Transport with Targeting -- 3.3.8 Transporter -- 3.3.9 Cell-Penetrating Peptides (CPPs) -- 3.4 Future SXFM -- 3.4.1 Improvement of X-Ray Sources -- 3.4.2 High-Resolution SXFM -- 3.4.3 Possible Labeled Probes -- 3.4.4 Application of Medical Probes to SXFM -- 3.4.5 SXFM Application for Different Types of Microscopy -- 3.5 Collaboration on Platforms in Different Fields -- 3.6 Conclusion -- References -- Chapter 4: Quantitative Elemental Bioimaging Protocol Using Femtosecond-Laser Ablation-ICP-Mass Spectrometry Coupled with Glas... -- 4.1 Introduction -- 4.2 Experimental Protocols -- 4.2.1 Instrumentations -- 4.2.2 Sample Preparations -- 4.2.3 Experiment Procedures -- 4.3 Results and Discussion -- 4.3.1 Calibration Strategy -- 4.3.2 Ablated Volume -- 4.3.3 Quantitative Imaging -- 4.4 Conclusion -- References -- Chapter 5: Single Cell Analysis by Using ICP-MS -- 5.1 Introduction -- 5.2 Overview of Cytometric Analysis by Using ICP-MS -- 5.3 ICP Mass Spectrometers for Cytometric Analysis -- 5.4 Cell Introduction Devices for Cytometric Analysis -- 5.5 Application of Cytometric Analysis by Using ICP-MS -- 5.5.1 Highly Sensitive Elemental Analysis by Time-Resolved ICP-MS -- 5.5.2 Mass Cytometry -- 5.6 Single Cell Analysis by Imaging Mass Spectrometry -- 5.7 Conclusion and Future Prospect -- References -- Chapter 6: Synchrotron Radiation X-Ray Analysis of Metal-Accumulating Plants -- 6.1 Introduction -- 6.2 Synchrotron Radiation X-Rays -- 6.3 X-Ray Analyses -- 6.3.1 Interactions of X-Rays with Matter -- 6.3.2 X-Ray Fluorescence -- 6.3.3 X-Ray Absorption Spectroscopy -- 6.3.4 X-Ray Diffraction -- 6.3.5 X-Ray Focusing Optics -- 6.4 Preparation of Biological Materials for Synchrotron Radiation (SR)-Based X-Ray Analyses and Applications in Metallomics -- 6.4.1 What Are Heavy Metal-Accumulating Plants?. , 6.4.2 General Preparation of Biological Materials -- 6.4.3 Example of Direct Analysis of Plant Tissues -- 6.4.4 Preparation and Analyses of Frozen Tissue Sections -- 6.4.5 Liquid and Powder Samples -- 6.4.6 Effects of Biomineralization on the Numbers of Grains Produced -- 6.5 Proposal Application for a Beamline -- 6.6 Prospective X-Ray Microanalyses in Metallomics -- References -- Chapter 7: 77Se NMR Spectroscopy for Speciation Analysis of Selenium Compounds -- 7.1 Introduction -- 7.2 Advantages of NMR Speciation Over Hyphenated Techniques -- 7.3 Observation of 77Se Nuclide in Authentic Standards -- 7.3.1 Chemical Shifts of Bio-selenocompounds by Direct Detection -- 7.3.2 Advanced Techniques for Detection of Bio-selenocompounds -- 7.4 Application of 77Se NMR Spectroscopy to Se Speciation in Biological Samples -- 7.5 Conclusions -- References -- Chapter 8: Protein Quantification and Quantitative Phosphorylation Analysis by the Determination of Hetero Atoms (S and P) by ... -- 8.1 Introduction -- 8.2 Experimental -- 8.2.1 Reagents -- 8.2.2 Tryptic Digestion Procedure -- 8.2.3 NanoHPLC-ICPMS -- 8.2.4 Screening of Phosphorylated Proteins in SDS-PAGE Gel Using LA-ICPMS -- 8.2.5 Evaluation of the Tryptic Digestion Efficiency -- 8.3 Results and Discussion -- 8.3.1 Optimization of the Octopole Reaction Gas Flow -- 8.3.2 Hyphenation of nanoHPLC and ICPMS -- 8.3.3 Assignment of S Atom Composition by the Use of nanoHPLC-ICPMS and Peptide Quantification -- 8.3.4 Tryptic Digestion Efficiency and Protein Quantification -- 8.3.5 Analysis of Degree of Phosphorylation -- 8.4 Conclusions -- References -- Chapter 9: Analysis of Drug Active Pharmaceutical Ingredients and Biomolecules Using Triple Quadrupole ICP-MS -- 9.1 Introduction -- 9.2 ICP-QQQ -- 9.2.1 ICP-QQQ -- 9.2.2 How MS/MS Works with a Reaction Gas -- 9.2.3 Reaction Cell Gas Selection. , 9.3 Application of ICP-QQQ for Drug API Analysis and Life Science Research -- 9.3.1 Drug API Analysis by LC-ICP-QQQ -- 9.3.2 Peptide and Phosphor Peptide Analysis by Capillary-LC-ICP-QQQ -- 9.4 Conclusions -- References -- Chapter 10: Highly Sensitive Analysis of Proteins and Metabolites by Metal Tagging Using LC-ICP-MS -- 10.1 Introduction -- 10.2 Analysis Using Metal Tags -- 10.2.1 Metal Tags and the Metal Tag Reagents -- 10.2.2 Derivatization by the Metal Tag Reagents -- 10.2.3 Separation of the Derivatives -- 10.3 Design of Metal Tags -- 10.3.1 Tags Based on Metal Chelates -- 10.3.2 Tags Based on Heteroatoms Binding with Covalent Bonds -- 10.3.3 Tags Based on Nanoparticles -- 10.4 Biomolecule Analysis by Metal Tags -- 10.4.1 Proteins -- 10.4.2 Amino Acids -- 10.4.3 Organic Acids -- References -- Part III: Application of Metallomics in Molecular Biology, Medicine and Pharmaceutical Sciences -- Chapter 11: Comprehensive Element Analysis of Prokaryotic and Eukaryotic Cells as well as Organelles by ICP-MS -- 11.1 Introduction -- 11.2 Experimental -- 11.2.1 Reagents -- 11.2.2 Samples -- 11.2.2.1 Cell Strains and Culture Conditions -- 11.2.2.2 Isolation of Subcellular Organelles -- 11.2.2.2.1 Isolation of Chloroplast from Spinach Leaves -- 11.2.2.2.2 Isolation of Mitochondria from Potato Tuber Tissues -- 11.2.2.2.3 Isolation of Mitochondria from Bovine Liver Tissues -- 11.2.3 Apparatus -- 11.2.4 Downsized Microwave-Assisted Acid Digestion -- 11.3 Results and Discussion -- 11.3.1 Observation of Intact Cells and Organelles -- 11.3.2 Determination of Major-to-Ultratrace Elements in Unicellular Microorganisms and Subcellular Organelles -- 11.3.3 Elemental Abundance of E. coli -- 11.3.4 Elemental Abundance of Cyanobacteria -- 11.3.5 Elemental Abundance of Chlorella -- 11.3.6 Elemental Abundance of Chloroplast -- 11.3.7 Elemental Abundance of Mitochondria. , 11.4 Conclusion -- References -- Chapter 12: Iron Isotope Signature in Red Blood Cell Samples from Japanese Female Donors of Various Ages -- 12.1 Introduction -- 12.2 Experimental -- 12.2.1 Instrumentation -- 12.2.2 Effects of Fe Valency in Solution on Measured Isotopic Composition -- 12.2.3 Reproducibility of Analysis -- 12.2.4 Sample -- 12.2.5 Sample Preparation -- 12.2.6 Dietary Survey -- 12.3 Results and Discussion -- 12.3.1 Gender Difference in Fe Isotope Ratio -- 12.3.2 Effects of Age -- 12.3.3 Differences Among Race -- 12.3.4 Effect of Biological and Nutritional Data on Fe Isotopes -- 12.3.5 Conclusive Remarks -- Acknowledgments -- References -- Chapter 13: Roles of Zinc Transporters in Cellular Transport of Cadmium and Manganese -- 13.1 Introduction -- 13.2 Cadmium Transport from a Viewpoint of Metallomics -- 13.2.1 Multiple Candidate Transporters for Cadmium Transport -- 13.2.2 Establishment of Cadmium-Resistant Cells from Metallothionein-Null Cells -- 13.2.3 Metallomics Approach to Identify Cadmium Transporter -- 13.3 The Roles of ZIP8 and ZIP14 in Cadmium Transport -- 13.3.1 Identification of ZIP8 and ZIP14 as Cadmium Transporters -- 13.3.2 Characterization of ZIP8 and ZIP14 as Cadmium Transporters -- 13.3.3 The Roles of ZIP8 and ZIP14 in Cadmium Transport in the Kidney -- 13.4 The Roles of ZIP8 and ZIP14 in Manganese Transport -- 13.4.1 Interactions of Cd and Mn Transport in Nonmammalian Species -- 13.4.2 RBL-2H3 Cell Line as a Model of Cellular Manganese Transport -- 13.4.3 Manganese Transport in Neuronal Cells -- 13.5 Human Diseases Related to Disturbances in Manganese Transport -- 13.5.1 ZnT10 Mutation and Hyperaccumulation of Manganese -- 13.5.2 ZIP8 Mutation and Disorders of Glycosylation -- 13.6 Conclusion -- References. , Chapter 14: Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at t.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...