GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Asymmetric synthesis. ; Organic compounds -- Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (472 pages)
    Edition: 1st ed.
    ISBN: 9783527610631
    DDC: 547.2
    Language: English
    Note: Intro -- Asymmetric Synthesis with Chemical and Biological Methods -- Foreword -- Contents -- Preface -- List of Contributors -- 1 Stoichiometric Asymmetric Synthesis -- 1.1 Development of Novel Enantioselective Synthetic Methods -- 1.1.1 Introduction -- 1.1.2 α-Silyl Ketone-Controlled Asymmetric Syntheses -- 1.1.2.1 Regio- and Enantioselective α-Fluorination of Ketones -- 1.1.2.2 α-Silyl Controlled Asymmetric Mannich Reactions -- 1.1.3 Asymmetric Hetero-Michael Additions -- 1.1.3.1 Asymmetric Aza-Michael Additions -- 1.1.3.2 Asymmetric Oxa-Michael Additions -- 1.1.3.3 Asymmetric Phospha-Michael Additions -- 1.1.4 Asymmetric Syntheses with Lithiated α-Aminonitriles -- 1.1.4.1 Asymmetric Nucleophilic α-Aminoacylation -- 1.1.4.2 Asymmetric Nucleophilic Alkenoylation of Aldehydes -- 1.1.5 Asymmetric Electrophilic α-Substitution of Lactones and Lactams -- 1.1.6 Asymmetric Synthesis of α-Phosphino Ketones and 2-Phosphino Alcohols -- 1.1.7 Asymmetric Synthesis of 1,3-Diols and anti-1,3-Polyols -- 1.1.8 Asymmetric Synthesis of α-Substituted Sulfonamides and Sulfonates -- 1.2 Asymmetric Synthesis of Natural Products Employing the SAMP/RAMP Hydrazone Methodology -- 1.2.1 Introduction -- 1.2.2 Stigmatellin A -- 1.2.3 Callistatin A -- 1.2.4 Dehydroiridodiol(dial) and Neonepetalactone -- 1.2.5 First Enantioselective Synthesis of Dendrobatid Alkaloids Indolizidine 209I and 223J -- 1.2.6 Efficient Synthesis of (2S,12´R)-2-(12´-Aminotridecyl)pyrrolidine, a Defense Alkaloid of the Mexican Bean Beetle -- 1.2.7 2-epi-Deoxoprosopinine -- 1.2.8 Attenol A and B -- 1.2.9 Asymmetric Synthesis of (+)- and (-)-Streptenol A -- 1.2.10 Sordidin -- 1.2.11 Prelactone B and V -- 1.3 Asymmetric Synthesis Based on Sulfonimidoyl-Substituted Allyltitanium Complexes -- 1.3.1 Introduction -- 1.3.2 Hydroxyalkylation of Sulfonimidoyl-Substituted Allylltitanium Complexes. , 1.3.2.1 Sulfonimidoyl-Substituted Bis(allyl)titanium Complexes -- 1.3.2.2 Sulfonimidoyl-Substituted Mono(allyl)tris(diethylamino)titanium Complexes -- 1.3.3 Aminoalkylation of Sulfonimidoyl-Substituted Allyltitanium Complexes -- 1.3.3.1 Sulfonimidoyl-Substituted Bis(allyl)titanium Complexes -- 1.3.3.2 Sulfonimidoyl-Substituted Mono(allyl)tris(diethylamino)titanium Complexes -- 1.3.4 Structure and Reactivity of Sulfonimidoyl-Substituted Allyltitanium Complexes -- 1.3.4.1 Sulfonimidoyl-Substituted Bis(allyl)titanium Complexes -- 1.3.4.2 Sulfonimidoyl-Substituted Mono(allyl)titanium Complexes -- 1.3.5 Asymmetric Synthesis of Homopropargyl Alcohols -- 1.3.6 Asymmetric Synthesis of 2,3-Dihydrofurans -- 1.3.7 Synthesis of Bicyclic Unsaturated Tetrahydrofurans -- 1.3.8 Asymmetric Synthesis of Alkenyloxiranes -- 1.3.9 Asymmetric Synthesis of Unsaturated Mono- and Bicyclic Prolines -- 1.3.10 Asymmetric Synthesis of Bicyclic Amino Acids -- 1.3.11 Asymmetric Synthesis of β-Amino Acids -- 1.3.12 Conclusion -- 1.4 The "Daniphos" Ligands: Synthesis and Catalytic Applications -- 1.4.1 Introduction -- 1.4.2 General Synthesis -- 1.4.3 Applications in Stereoselective Catalysis -- 1.4.3.1 Enantioselective Hydrogenations -- 1.4.3.2 Diastereoselective Hydrogenation of Folic Acid Ester -- 1.4.3.3 Enantioselective Isomerization of Geranylamine to Citronellal -- 1.4.3.4 Nucleophilic Asymmetric Ring-Opening of Oxabenzonorbornadiene -- 1.4.3.5 Enantioselective Suzuki Coupling -- 1.4.3.6 Asymmetric Hydrovinylation -- 1.4.3.7 Allylic Sulfonation -- 1.4.4 Conclusion -- 1.5 New Chiral Ligands Based on Substituted Heterometallocenes -- 1.5.1 Introduction -- 1.5.2 General Properties of Phosphaferrocenes -- 1.5.3 Synthesis of Phosphaferrocenes -- 1.5.4 Preparation of Bidentate P,P and P,N Ligands -- 1.5.5 Modification of the Backbone Structure. , 1.5.6 Cp-Phosphaferrocene Hybrid Systems -- 1.5.7 Catalytic Applications -- 1.5.8 Conclusion -- 2 Catalytic Asymmetric Synthesis -- 2.1 Chemical Methods -- 2.1.1 Sulfoximines as Ligands in Asymmetric Metal Catalysis -- 2.1.1.1 Introduction -- 2.1.1.2 Development of Methods for Sulfoximine Modification -- 2.1.1.3 Sulfoximines as Ligands in Asymmetric Metal Catalysis -- 2.1.1.4 Conclusions -- 2.1.2 Catalyzed Asymmetric Aryl Transfer Reactions -- 2.1.2.1 Introduction -- 2.1.2.2 Catalyst Design -- 2.1.2.3 Catalyzed Aryl Transfer Reactions -- 2.1.3 Substituted [2.2]Paracyclophane Derivatives as Efficient Ligands for Asymmetric 1,2- and 1,4-Addition Reactions -- 2.1.3.1 [2.2]Paracyclophanes as Chiral Ligands -- 2.1.3.2 Synthesis of [2.2]Paracyclophane Ligands -- 2.1.3.2.1 Preparation of FHPC-, AHPC-, and BHPC-Based Imines -- 2.1.3.2 Structural Information on AHPC-Based Imines -- 2.1.3.3 Asymmetric 1,2-Addition Reactions to Aryl Aldehydes -- 2.1.3.3.1 Initial Considerations -- 2.1.3.3.2 Asymmetric Addition Reactions to Aromatic Aldehydes: Scope of Substrates -- 2.1.3.4 Asymmetric Addition Reactions to Aliphatic Aldehydes -- 2.1.3.5 Addition of Alkenylzinc Reagents to Aldehydes -- 2.1.3.6 Asymmetric Conjugate Addition Reactions -- 2.1.3.7 Asymmetric Addition Reactions to Imines -- 2.1.3.8 Asymmetric Addition Reactions on Solid Supports -- 2.1.3.8.1 Applications -- 2.1.3.9 Conclusions and Future Perspective -- 2.1.4 Palladium-Catalyzed Allylic Alkylation of Sulfur and Oxygen Nucleophiles - Asymmetric Synthesis, Kinetic Resolution and Dynamic Kinetic Resolution -- 2.1.4.1 Introduction -- 2.1.4.2 Asymmetric Synthesis of Allylic Sulfones and Allylic Sulfides and Kinetic Resolution of Allylic Esters -- 2.1.4.2.1 Kinetic Resolution -- 2.1.4.2.2 Selectivity -- 2.1.4.2.3 Asymmetric Synthesis -- 2.1.4.2.4 Synthesis of Enantiopure Allylic Alcohols. , 2.1.4.3 Asymmetric Rearrangment and Kinetic Resolution of Allylic Sulfinates -- 2.1.4.3.1 Introduction -- 2.1.4.3.2 Synthesis of Racemic Allylic Sulfinates -- 2.1.4.3.3 Pd-Catalyzed Rearrangement -- 2.1.4.3.4 Kinetic Resolution -- 2.1.4.3.5 Mechanistic Considerations -- 2.1.4.4 Asymmetric Rearrangment of Allylic Thiocarbamates -- 2.1.4.4.1 Introduction -- 2.1.4.4.2 Synthesis of Racemic O-Allylic Thiocarbamates -- 2.1.4.4.3 Acyclic Carbamates -- 2.1.4.4.4 Cyclic Carbamates -- 2.1.4.4.5 Mechanistic Considerations -- 2.1.4.4.6 Synthesis of Allylic Sulfides -- 2.1.4.5 Asymmetric Synthesis of Allylic Thioesters and Kinetic Resolution of Allylic Esters -- 2.1.4.5.1 Introduction -- 2.1.4.5.2 Asymmetric Synthesis of Allylic Thioesters -- 2.1.4.5.3 Kinetic Resolution of Allylic Esters -- 2.1.4.5.4 Memory Effect and Dynamic Kinetic Resolution of the Five-Membered Cyclic Acetate -- 2.1.4.5.5 Asymmetric Synthesis of Cyclopentenyl Thioacetate -- 2.1.4.6 Kinetic and Dynamic Kinetic Resolution of Allylic Alcohols -- 2.1.4.6.1 Introduction -- 2.1.4.6.2 Asymmetric Synthesis of Symmetrical Allylic Alcohols -- 2.1.4.6.3 Asymmetric Synthesis of Unsymmetrical Allylic Alcohols -- 2.1.4.6.4 Asymmetric Synthesis of a Prostaglandin Building Block -- 2.1.4.6.5 Investigation of an Unsaturated Analogue of BPA -- 2.1.4.7 Conclusions -- 2.1.5 The QUINAPHOS Ligand Family and its Application in Asymmetric Catalysis -- 2.1.5.1 Introduction -- 2.1.5.2 Synthetic Strategy -- 2.1.5.3 Stereochemistry and Coordination Properties -- 2.1.5.3.1 Free Ligands -- 2.1.5.3.2 Complexes -- 2.1.5.4 Catalytic Applications -- 2.1.5.4.1 Rhodium-Catalyzed Asymmetric Hydroformylation of Styrene -- 2.1.5.4.2 Rhodium-Catalyzed Asymmetric Hydrogenation of Functionalized Alkenes -- 2.1.5.4.3 Ruthenium-Catalyzed Asymmetric Hydrogenation of Aromatic Ketones. , 2.1.5.4.4 Copper-Catalyzed Enantioselective Conjugate Addition of Diethylzinc to Enones -- 2.1.5.4.5 Nickel-Catalyzed Asymmetric Hydrovinylation -- 2.1.5.4.6 Nickel-Catalyzed Cycloisomerization of 1,6-Dienes -- 2.1.5.5 Conclusions -- 2.1.6 Immobilization of Transition Metal Complexes and Their Application to Enantioselective Catalysis -- 2.1.6.1 Introduction -- 2.1.6.2 Immobilized Rh Diphosphino Complexes as Catalysts for Asymmetric Hydrogenation -- 2.1.6.2.1 Preparation and Characterization of the Immobilized Rh-Diphosphine Complexes -- 2.1.6.2.2 Enantioselective Hydrogenation over Immobilized Rhodium Diphosphine Complexes -- 2.1.6.3 Heterogeneous Asymmetric Epoxidation of Olefins over Jacobsen's Catalyst Immobilized in Inorganic Porous Materials -- 2.1.6.3.1 Preparation and Characterization of Immobilized Jacobsen's Catalysts -- 2.1.6.3.2 Epoxidation of Olefins over Immobilized Jacobsen Catalysts -- 2.1.6.4 Novel Heterogenized Catalysts for Asymmetric Ring-Opening Reactions of Epoxides -- 2.1.6.4.1 Synthesis and Characterization of the Heterogenized Catalysts -- 2.1.6.4.2 Asymmetric Ring Opening of Epoxides over New Heterogenized Catalysts -- 2.1.6.5 Conclusions -- 2.2 Biological Methods -- 2.2.1 Directed Evolution to Increase the Substrate Range of Benzoylformate Decarboxylase from Pseudomonas putida -- 2.2.1.1 Introduction -- 2.2.1.2 Materials and Methods -- 2.2.1.2.1 Reagents -- 2.2.1.2.2 Construction of Strains for Heterologous Expression of BFD and BAL -- 2.2.1.2.3 Polymerase Chain Reactions -- 2.2.1.2.4 Generation of a BFD Variant Library by Random Mutagenesis -- 2.2.1.2.5 High-Throughput Screening for Carboligation Activity with the Substrates Benzaldehyde and Dimethoxyacetaldehyde -- 2.2.1.2.6 Expression and Purification of BFD Variants -- 2.2.1.2.7 Protein Analysis Methods -- 2.2.1.2.8 Enzyme Activity Assays. , 2.2.1.3 Results and Discussion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...