GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Voltage regulators--Design and construction. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (548 pages)
    Ausgabe: 1st ed.
    ISBN: 9781118896822
    Serie: IEEE Press Series
    Sprache: Englisch
    Anmerkung: Intro -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Moore´s Law -- 1.2 Technology Process Impact: Power Management IC from 0.5 micro-meter to 28 nano-meter -- 1.2.1 MOSFET Structure -- 1.2.2 Scaling Effects -- 1.2.3 Leakage Power Dissipation -- 1.3 Challenge of Power Management IC in Advanced Technological Products -- 1.3.1 Multi-Vth Technology -- 1.3.2 Performance Boosters -- 1.3.3 Layout-Dependent Proximity Effects -- 1.3.4 Impacts on Circuit Design -- 1.4 Basic Definition Principles in Power Management Module -- 1.4.1 Load Regulation -- 1.4.2 Transient Voltage Variations -- 1.4.3 Conduction Loss and Switching Loss -- 1.4.4 Power Conversion Efficiency -- References -- Chapter 2 Design of Low Dropout (LDO) Regulators -- 2.1 Basic LDO Architecture -- 2.1.1 Types of Pass Device -- 2.2 Compensation Skills -- 2.2.1 Pole Distribution -- 2.2.2 Zero Distribution and Right-Half-Plane (RHP) Zero -- 2.3 Design Consideration for LDO Regulators -- 2.3.1 Dropout Voltage -- 2.3.2 Efficiency -- 2.3.3 Line/Load Regulation -- 2.3.4 Transient Output Voltage Variation Caused by Sudden Load Current Change -- 2.4 Analog-LDO Regulators -- 2.4.1 Characteristics of Dominant-Pole Compensation -- 2.4.2 Characteristics of C-free Structure -- 2.4.3 Design of Low-Voltage C-free LDO Regulator -- 2.4.4 Alleviating Minimum Load Current Constraint through the Current Feedback Compensation (CFC) Technique in the Multi-stage C-free LDO Regulator -- 2.4.5 Multi-stage LDO Regulator with Feedforward Path and Dynamic Gain Adjustment (DGA) -- 2.5 Design Guidelines for LDO Regulators -- 2.5.1 Simulation Tips and Analyses -- 2.5.2 Technique for Breaking the Loop in AC Analysis Simulation -- 2.5.3 Example of the Simulation Results of the LDO Regulator with Dominant-Pole Compensation. , 2.6 Digital-LDO (D-LDO) Design -- 2.6.1 Basic D-LDO -- 2.6.2 D-LDO with Lattice Asynchronous Self-Timed Control -- 2.6.3 Dynamic Voltage Scaling (DVS) -- 2.7 Switchable Digital/Analog-LDO (D/A-LDO) Regulator with Analog DVS Technique -- 2.7.1 ADVS Technique -- 2.7.2 Switchable D/A-LDO Regulator -- References -- Chapter 3 Design of Switching Power Regulators -- 3.1 Basic Concept -- 3.2 Overview of the Control Method and Operation Principle -- 3.3 Small Signal Modeling and Compensation Techniques in SWR -- 3.3.1 Small Signal Modeling of Voltage-Mode SWR -- 3.3.2 Small Signal Modeling of the Closed-Loop Voltage-Mode SWR -- 3.3.3 Small Signal Modeling of Current-Mode SWR -- References -- Chapter 4 Ripple-Based Control Technique Part I -- 4.1 Basic Topology of Ripple-Based Control -- 4.1.1 Hysteretic Control -- 4.1.2 On-Time Control -- 4.1.3 Off-Time Control -- 4.1.4 Constant Frequency with Peak Voltage Control and Constant Frequency with Valley Voltage Control -- 4.1.5 Summary of Topology of Ripple-Based Control -- 4.2 Stability Criterion of On-Time Controlled Buck Converter -- 4.2.1 Derivation of the Stability Criterion -- 4.2.2 Selection of Output Capacitor -- 4.3 Design Techniques When Using MLCC with a Small Value of RESR -- 4.3.1 Use of Additional Ramp Signal -- 4.3.2 Use of Additional Current Feedback Path -- 4.3.3 Comparison of On-Time Control with an Additional Current Feedback Path -- 4.3.4 Ripple-Reshaping Technique to Compensate a Small Value of RESR -- 4.3.5 Experimental Result of Ripple-Reshaped Function -- References -- Chapter 5 Ripple-Based Control Technique Part II -- 5.1 Design Techniques for Enhancing Voltage Regulation Performance -- 5.1.1 Accuracy in DC Voltage Regulation -- 5.1.2 V2 Structure for Ripple-Based Control -- 5.1.3 V2 On-Time Control with an Additional Ramp or Current Feedback Path. , 5.1.4 Compensator for V2 Structure with Small RESR -- 5.1.5 Ripple-Based Control with Quadratic Differential and Integration Technique if Small RESR is Used -- 5.1.6 Robust Ripple Regulator (R3) -- 5.2 Analysis of Switching Frequency Variation to Reduce Electromagnetic Interference -- 5.2.1 Improvement of Noise Immunity of Feedback Signal -- 5.2.2 Bypassing Path to Filter the High-Frequency Noise of the Feedback Signal -- 5.2.3 Technique of PLL Modulator -- 5.2.4 Full Analysis of Frequency Variation under Different vIN, vOUT, and iLoad -- 5.2.5 Adaptive On-Time Controller for Pseudo-Constant fSW -- 5.3 Optimum On-Time Controller for Pseudo-Constant fSW -- 5.3.1 Algorithm for Optimum On-Time Control -- 5.3.2 Type-I Optimum On-Time Controller with Equivalent VIN and VOUT,eq -- 5.3.3 Type-II Optimum On-Time Controller with Equivalent VDUTY -- 5.3.4 Frequency Clamper -- 5.3.5 Comparison of Different On-Time Controllers -- 5.3.6 Simulation Result of Optimum On-Time Controller -- 5.3.7 Experimental Result of Optimum On-Time Controller -- References -- Chapter 6 Single-Inductor Multiple-Output (SIMO) Converter -- 6.1 Basic Topology of SIMO Converters -- 6.1.1 Architecture -- 6.1.2 Cross Regulation -- 6.2 Applications of SIMO Converters -- 6.2.1 System-on-Chip -- 6.2.2 Portable Electronics Systems -- 6.3 Design Guidelines of SIMO Converters -- 6.3.1 Energy Delivery Paths -- 6.3.2 Classifications of Control Methods -- 6.3.3 Design Goals -- 6.4 SIMO Converter Techniques for Soc -- 6.4.1 Superposition Theorem in Inductor Current Control -- 6.4.2 Dual-Mode Energy Delivery Methodology -- 6.4.3 Energy-Mode Transition -- 6.4.4 Automatic Energy Bypass -- 6.4.5 Elimination of Transient Cross Regulation -- 6.4.6 Circuit Implementations -- 6.4.7 Experimental Results -- 6.5 SIMO Converter Techniques for Tablets. , 6.5.1 Output Independent Gate Drive Control in SIMO Converter -- 6.5.2 CCM/GM Relative Skip Energy Control in SIMO Converter -- 6.5.3 Bidirectional Dynamic Slope Compensation in SIMO Converter -- 6.5.4 Circuit Implementations -- 6.5.5 Experimental Results -- References -- Chapter 7 Switching-Based Battery Charger -- 7.1 Introduction -- 7.1.1 Pure Charge State -- 7.1.2 Direct Supply State -- 7.1.3 Plug Off State -- 7.1.4 CAS State -- 7.2 Small Signal Analysis of Switching-Based Battery Charger -- 7.3 Closed-Loop Equivalent Model -- 7.4 Simulation with PSIM -- 7.5 Turbo-boost Charger -- 7.6 Influence of Built-In Resistance in the Charger System -- 7.7 Design Example: Continuous Built-In Resistance Detection -- 7.7.1 CBIRD Operation -- 7.7.2 CBIRD Circuit Implementation -- 7.7.3 Experimental Results -- References -- Chapter 8 Energy-Harvesting Systems -- 8.1 Introduction to Energy-Harvesting Systems -- 8.2 Energy-Harvesting Sources -- 8.2.1 Vibration Electromagnetic Transducers -- 8.2.2 Piezoelectric Generator -- 8.2.3 Electrostatic Energy Generator -- 8.2.4 Wind-Powered Energy Generator -- 8.2.5 Thermoelectric Generator -- 8.2.6 Solar Cells -- 8.2.7 Magnetic Coil -- 8.2.8 RF/Wireless -- 8.3 Energy-Harvesting Circuits -- 8.3.1 Basic Concept of Energy-Harvesting Circuits -- 8.3.2 AC Source Energy-Harvesting Circuits -- 8.3.3 DC-Source Energy-Harvesting Circuits -- 8.4 Maximum Power Point Tracking -- 8.4.1 Basic Concept of Maximum Power Point Tracking -- 8.4.2 Impedance Matching -- 8.4.3 Resistor Emulation -- 8.4.4 MPPT Method -- References -- Index -- EULA.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...