GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Restaurants -- Ontario -- Ottawa -- Directories. ; Restaurants -- Québec (Province) -- Gatineau -- Guidebooks. ; Electronic books.
    Description / Table of Contents: Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. It will enable them to understand how basic physical concepts can be used in the investigation of biological problems such as protein folding, enzyme catalysis and ion channel permeation.
    Type of Medium: Online Resource
    Pages: 1 online resource (528 pages)
    Edition: 1st ed.
    ISBN: 9780511344336
    DDC: 571.4
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- Acknowledgements -- Global transitions in proteins -- 1.1 Defining a global state -- 1.2 Equilibrium between two global states -- 1.3 Global transitions induced by temperature -- 1.4 Lysozyme unfolding -- 1.5 Steepness and enthalpy -- 1.6 Cooperativity and thermal transitions -- 1.7 Transitions induced by other variables -- 1.8 Transitions induced by voltage -- 1.9 The voltage sensor of voltage-gated channels -- 1.10 Gating current -- 1.11 Cooperativity and voltage-induced transitions -- 1.12 Compliance of a global state -- Problems for Chapter 1 -- Chapter 2 Molecular forces in biological structures -- 2.1 The Coulomb potential -- 2.2 Electrostatic self-energy -- 2.3 Image forces -- 2.4 Charge-dipole interactions -- 2.5 Induced dipoles -- 2.6 Cation-phi interactions -- 2.7 Dispersion forces -- 2.8 Hydrophobic forces -- 2.9 Hydration forces -- 2.10 Hydrogen bonds -- 2.11 Steric repulsions -- 2.12 Bond flexing and harmonic potentials -- 2.13 Stabilizing forces in proteins -- 2.14 Protein force fields -- 2.15 Stabilizing forces in nucleic acids -- 2.16 Lipid bilayers and membrane proteins -- Problems for Chapter 2 -- Chapter 3 Conformations of macromolecules -- 3.1 n-Butane -- 3.2 Configurational partition functions and polymer chains -- 3.3 Statistics of random coils -- 3.4 Effective segment length -- 3.5 Nonideal polymer chains and theta solvents -- 3.6 Probability distributions -- 3.7 Loop formation -- 3.8 Stretching a random coil -- 3.9 When do molecules act like random coils? -- 3.10 Backbone rotations in proteins: secondary structure -- 3.11 The entropy of protein denaturation -- 3.12 The helix-coil transition -- 3.13 Mathematical analysis of the helix-coil transition -- 3.14 Results of helix-coil theory -- 3.15 Helical propensities -- 3.16 Protein folding. , 3.17 Cooperativity in protein folding -- Problems for Chapter 3 -- Chapter 4 Molecular associations -- 4.1 Association equilibrium in solution -- 4.2 Cooperativity -- 4.2.1 Concerted binding -- 4.2.2 Sequential binding -- 4.2.3 Nearest neighbor interactions -- 4.3 Thermodynamics of associations -- 4.4 Contact formation -- 4.5 Statistical mechanics of association -- 4.6 Translational free energy -- 4.7 Rotational free energy -- 4.8 Vibrational free energy -- 4.9 Solvation effects -- 4.10 Configurational free energy -- 4.11 Protein association in membranes - reduction of dimensionality -- 4.12 Binding to membranes -- Problems for Chapter 4 -- Chapter 5 Allosteric interactions -- 5.1 The allosteric transition -- 5.2 The simplest caseone binding site and one allosteric transition -- 5.3 Binding and response -- 5.4 Energy balance in the one-site model -- 5.5 G-protein coupled receptors -- 5.6 Binding site interactions -- 5.7 The Monod-Wyman-Changeux (MWC) model -- 5.8 Hemoglobin -- 5.9 Energetics of the MWC model -- 5.10 Macroscopic and microscopic additivity -- 5.11 Phosphofructokinase -- 5.12 Ligand-gated channels -- 5.13 Subunit-subunit interactions: the Koshland-Nemethy-Filmer (KNF) model -- 5.14 The Szabo-Karplus (SK) model -- Problems for Chapter 5 -- Chapter 6 Diffusion and Brownian motion -- 6.1 Macroscopic diffusion: Fick's laws -- 6.2 Solving the diffusion equation -- 6.2.1 One-dimensional diffusion from a point -- 6.2.2 Three-dimensional diffusion from a point -- 6.2.3 Diffusion across an interface -- 6.2.4 Diffusion with boundary conditions -- 6.3 Diffusion at steady state -- 6.3.1 A long pipe -- 6.3.2 A small hole -- 6.3.3 A porous membrane -- 6.4 Microscopic diffusion - random walks -- 6.5 Random walks and the Gaussian distribution -- 6.6 The diffusion equation from microscopic theory -- 6.7 Friction -- 6.8 Stokes' law. , 6.9 Diffusion constants of macromolecules -- 6.10 Lateral diffusion in membranes -- Problems for Chapter 6 -- Chapter 7 Fundamental rate processes -- 7.1 Exponential relaxations -- 7.2 Activation energies -- 7.3 The reaction coordinate and detailed balance -- 7.4 Linear free energy relations -- 7.5 Voltage-dependent rate constants -- 7.6 The Marcus free energy relation -- 7.7 Eyring theory -- 7.8 Diffusion over a barrier - Kramers' theory -- 7.9 Single-channel kinetics -- 7.10 The reaction coordinate for a global transition -- Problems for Chapter 7 -- Chapter 8 Association kinetics -- 8.1 Bimolecular association -- 8.2 Small perturbations -- 8.3 Diffusion-limited association -- 8.4 Diffusion-limited dissociation -- 8.5 Site binding -- 8.6 Protein-ligand association rates -- 8.6.1 Evolution of speed -- 8.6.2 Acetylcholinesterase -- 8.6.3 Horseradish peroxidase -- 8.7 Proton transfer -- 8.8 Binding to membrane receptors -- 8.9 Reduction in dimensionality -- 8.10 Binding to DNA -- Problems for Chapter 8 -- Chapter 9 Multi-state kinetics -- 9.1 The three-state model -- 9.2 Initial conditions -- 9.3 Separation of timescales -- 9.4 General solution to multi-state systems -- 9.5 The three-state model in matrix notation -- 9.6 Stationarity, conservation, and detailed balance -- 9.7 Single-channel kinetics: the three-state model -- 9.8 Separation of timescales in single channels: burst analysis -- 9.9 General treatment of single-channel kinetics: state counting -- 9.10 Relation between single-channel and macroscopic kinetics -- 9.11 Loss of stationarity, conservation, and detailed balance -- 9.12 Single-channel correlations: pathway counting -- 9.13 Multisubunit kinetics -- 9.14 Random walks and "stretched kinetics -- Problems for Chapter 9 -- Chapter 10 Enzyme catalysis -- 10.1 Basic mechanisms - serine proteases -- 10.2 Michaelis-Menten kinetics. , 10.3 Steady-state approximations -- 10.4 Pre-steady-state kinetics -- 10.5 Allosteric enzymes -- 10.6 Utilization of binding energy -- 10.7 Kramers' rate theory and catalysis -- 10.8 Proximity and translational entropy -- 10.9 Rotational entropy -- 10.10 Reducing E: transition state complementarity -- 10.11 Friction in an enzyme-substrate complex -- 10.12 General-acid-base catalysis and Brønsted slopes -- 10.13 Acid-base catalysis in Beta-galactosidase -- 10.14 Catalysis in serine proteases and strong H-bonds -- 10.15 Marcus' theory and proton transfer in carbonic anhydrase -- Problems for Chapter 10 -- Chapter 11 Ions and counterions -- 11.1 The Poisson-Boltzmann equation and the Debye length -- 11.2 Activity coefficient of an ion -- 11.3 Ionization of proteins -- 11.4 Gouy-Chapman theory and membrane surface charge -- 11.5 Stern's improvements of Gouy-Chapman theory -- 11.6 Surface charge and channel conductance -- 11.7 Surface charge and voltage gating -- 11.8 Electrophoretic mobility -- 11.9 Polyelectrolyte solutions I. Debye-Hückel screening -- 11.10 Polyelectrolyte solutions II. Counterion-condensation -- 11.11 DNA melting -- Problems for Chapter 11 -- Chapter 12 Fluctuations -- 12.1 Deviations from the mean -- 12.2 Number fluctuations and the Poisson distribution -- 12.3 The statistics of light detection by the eye -- 12.4 Equipartition of energy -- 12.5 Energy fluctuations in a macromolecule -- 12.6 Fluctuations in protein ionization -- 12.7 Fluctuations in a two-state system -- 12.8 Single-channel current -- 12.9 The correlation function of a two-state system -- 12.10 The Wiener-Khintchine theorem -- 12.11 Channel noise -- 12.12 Circuit noise -- 12.13 Fluorescence correlation spectroscopy -- 12.14 Friction and the fluctuation-dissipation theorem -- Problems for Chapter 12 -- Chapter 13 Ion permeation and membrane potential. , 13.1 Nernst potentials -- 13.2 Donnan potentials -- 13.3 Membrane potentials of cells -- 13.3.1 Neurons -- 13.3.2 Vertebrate skeletal muscle -- 13.4 A membrane permeable to Na+ and K+ -- 13.5 Membrane potentials of neurons again -- 13.6 The Ussing flux ratio and active transport -- 13.7 The Goldman-Hodgkin-Katz voltage equation -- 13.8 Membrane pumps and potentials -- 13.9 Transporters and potentials -- 13.10 The Goldman-Hodgkin-Katz current equation -- 13.11 Divalent ions -- 13.12 Surface charge and membrane potentials -- 13.13 Rate theory and membrane potentials -- Problems for Chapter 13 -- Chapter 14 Ion permeation and channel structure -- 14.1 Permeation without channels -- 14.2 The Ohmic channel -- 14.3 Energy barriers and channel properties -- 14.4 Eisenman selectivity sequences -- 14.5 Forces inside an ion channel -- 14.6 Gramicidin A -- 14.7 Rate theory for multibarrier channels -- 14.8 Single-ion channels -- 14.9 Single-file channels -- 14.10 The KcsA channel -- Problems for Chapter 14 -- Chapter 15 Cable theory -- 15.1 Current through membranes and cytoplasm -- 15.2 The cable equation -- 15.3 Steady state in a finite cable -- 15.4 Voltage steps in a finite cable -- 15.5 Current steps in a finite cable -- 15.6 Branches and equivalent cylinder representations -- 15.6.1 Steady state -- 15.6.2 Time constants -- 15.7 Cable analysis of a neuron -- 15.8 Synaptic integration in dendrites: analytical models -- 15.8.1 Impulse responses -- 15.8.2 Realistic synaptic inputs -- 15.9 Compartmental models and cable theory -- 15.10 Synaptic integration in dendrites: compartmental models -- Problems for Chapter 15 -- Chapter 16 Action potentials -- 16.1 The action potential -- 16.2 The voltage clamp and the properties of Na+ and K+ channels -- 16.3 The Hodgkin-Huxley equations -- 16.4 Current-voltage curves and thresholds -- 16.5 Propagation -- 16.6 Myelin. , 16.7 Axon geometry and conduction.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...