GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Chemistry, Organic. ; Amines. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (292 pages)
    Edition: 1st ed.
    ISBN: 9783642539299
    Series Statement: Topics in Current Chemistry Series ; v.343
    DDC: 547.042
    Language: English
    Note: Intro -- Preface -- Contents -- Control of Asymmetry in the Radical Addition Approach to Chiral Amine Synthesis -- 1 Background and Introduction -- 2 Intermolecular Radical Addition to Chiral N-Acylhydrazones -- 2.1 Use of Chiral Auxiliaries in Radical Additions to Imino Compounds -- 2.2 Design of Chiral N-Acylhydrazones -- 2.3 Preparation and Initial Reactivity Studies of Chiral N-Acylhydrazones -- 2.3.1 Additions of Secondary and Tertiary Radicals -- 2.3.2 Triethylborane-Mediated Radical Additions Without Tin -- 2.4 Manganese-Mediated Radical Addition: Discovery and Method Development -- 2.5 Hybrid Radical-Ionic Annulation -- 2.5.1 Pyrrolidine Synthesis -- 2.5.2 Stepwise Annulation in Piperidine Synthesis -- 2.5.3 Application to Formal Synthesis of Quinine -- 2.6 Applications in Amino Acid Synthesis -- 2.6.1 Synthesis of gamma-Amino Acids -- 2.6.2 Synthesis of α,α-Disubstituted α-Amino Acids -- 2.7 Considerations for Synthesis Design Using Mn-Mediated Radical Addition -- 2.7.1 Functional Group Compatibility -- 2.7.2 Stereoconvergence for Flexibility in Synthetic Application -- 3 Asymmetric Catalysis of Radical Addition -- 4 Summary -- References -- Stereoselective Formation of Amines by Nucleophilic Addition to Azomethine Derivatives -- 1 Introduction -- 2 1,2-Addition of Unstabilized Carbanions to Chiral Azomethine Derivatives -- 2.1 Electrophilicity of Azomethine Derivatives -- 2.2 Diastereoselective Addition to Chiral Imines -- 2.2.1 Chiral Imines and Derivatives Obtained from Chiral Carbonyl Derivatives -- 2.2.2 Chiral Imines and Derivatives Obtained from Chiral Amines -- 2.3 Stoichiometric Amounts of Chiral Reagents -- 2.4 Catalytic Asymmetric Nucleophilic Addition -- 2.4.1 Background: Lewis Base Activation of the Nucleophile vs Transition Metal Catalysis -- 2.4.2 Addition of Alkylmetals (sp3 Carbon). , 2.4.3 Addition of Alkenyl, Aryl, and Heteroarylmetals (sp2 Carbon) -- 2.4.4 Addition of Alkynylmetals (sp Carbon) -- 2.4.5 Addition of Allylmetal -- 3 Conclusion -- References -- Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamides and Enamines -- 1 Introduction -- 2 Enantioselective Hydrogenation of Enamides -- 2.1 Acyclic beta-Unsubstituted Enamides -- 2.1.1 Acyclic α-Arylethenamides -- 2.1.2 Acyclic α-Alkylethenamides -- 2.1.3 Other Acyclic beta-Unsubstituted Enamides -- 2.2 Acyclic beta-Substituted Enamides -- 2.2.1 Acyclic beta-Alkyl Substituted α-Arylenamides -- 2.2.2 Acyclic beta-Methoxymethoxy Substituted α-Arylenamides -- 2.2.3 Acyclic beta-Substituted α-Alkylenamides -- 2.3 Cyclic Enamides -- 3 Enantioselective Hydrogenation of Enamines -- 3.1 Acyclic Enamines -- 3.1.1 Acyclic α-Arylethenamines -- 3.1.2 Acyclic beta-Substituted α-Arylethenamines -- 3.2 Cyclic Enamines -- 4 Conclusion and Outlook -- References -- Asymmetric Hydrogenation of Imines -- 1 Introduction -- 2 Transition Metal Catalysts for Asymmetric Hydrogenation of Imines -- 2.1 Rh-Catalyzed Asymmetric Hydrogenation of Imines -- 2.2 Ti-Catalyzed Asymmetric Hydrogenation of Imines -- 2.3 Ru-Catalyzed Asymmetric Hydrogenation of Imines -- 2.4 Ir-Catalyzed Asymmetric Hydrogenation of Imines -- 2.4.1 Diphosphine Ligands in Ir-Based Catalysts -- 2.4.2 P,N Ligands in Ir-Based Catalysts -- 2.4.3 Phosphite, Phosphinite, and Phosphoramidite Ligands in Ir-Based Catalysts -- 2.4.4 Other Ir Catalysts -- 2.4.5 Additive Effects and Mechanistic Perspectives -- 2.5 Pd-Catalyzed Asymmetric Hydrogenation of Imines -- 2.5.1 Pd-Based Catalysts for Asymmetric Hydrogenation of Imines -- 2.5.2 Inhibitory Effect of Amine Product and Activation Strategy -- 3 Asymmetric Hydrogenation of Acyclic Imines -- 3.1 Asymmetric Hydrogenation of Activated Acyclic Imines. , 3.2 Asymmetric Hydrogenation of Non-activated Acyclic Imines -- 3.3 Asymmetric Hydrogenation of N-H Imines -- 4 Asymmetric Hydrogenation of Cyclic Imines -- 4.1 Asymmetric Hydrogenation of Activated Cyclic Imines -- 4.2 Asymmetric Hydrogenation of Non-activated Cyclic Imine Substrates -- 5 Conclusion -- References -- Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds -- 1 Introduction -- 2 Asymmetric Hydrogenation of Quinolines -- 2.1 Chiral Diphosphine Ligands -- 2.2 Other Chiral Phosphorus-Containing Ligands -- 2.3 Chiral Diamine Ligands -- 3 Asymmetric Hydrogenation of Isoquinolines -- 4 Asymmetric Hydrogenation of Quinoxalines -- 4.1 Chiral Phosphorus-Containing Ligands -- 4.2 Chiral Phosphine-Free Ligands -- 4.3 Metal/Brønsted Acid Catalytic System -- 5 Asymmetric Hydrogenation of Pyridines -- 6 Asymmetric Hydrogenation of Indoles and Pyrroles -- 7 Asymmetric Hydrogenation of Furans and Benzofurans -- 7.1 Chiral Phosphorus-Containing Ligands -- 7.2 Chiral N-Heterocyclic Carbene Ligands -- 8 Asymmetric Hydrogenation of Thiophenes and Benzothiophenes -- 9 Asymmetric Hydrogenation of Imidazoles and Oxazoles -- 10 Catalyst Immobilization -- 10.1 Biphasic Catalytic Systems -- 10.2 Catalyst Immobilization with Soluble Linear Polymer -- 10.3 Chiral Dendrimeric Catalyst -- 10.4 Catalyst Immobilization in Ionic Liquid -- 10.5 Catalyst Immobilization with Magnetic Nanoparticles -- 11 Mechanistic Aspects -- 11.1 Mechanism for Asymmetric Hydrogenation of Quinolines -- 11.2 Mechanism for Asymmetric Hydrogenation of Quinoxalines -- 12 Summary and Perspectives -- References -- Asymmetric Hydroamination -- 1 Introduction -- 2 Hydroamination of Alkenes -- 2.1 Metal-Catalyzed Intermolecular Hydroamination of Alkenes -- 2.2 Enzymatic Intermolecular Hydroamination of Alkenes -- 2.3 Cope-Type Hydroamination. , 2.4 Intramolecular Hydroamination of Aminoalkenes -- 2.4.1 Rare Earth Metal-Based Catalysts -- 2.4.2 Alkali Metal-Based Catalysts -- 2.4.3 Alkaline Earth Metal-Based Catalysts -- 2.4.4 Group 4 Metal-Based Catalysts -- 2.4.5 Group 5 Metal-Based Catalysts -- 2.4.6 Late Transition Metal-Based Catalysts -- 2.4.7 Organocatalytic Asymmetric Hydroamination of Aminoalkenes -- 2.4.8 Cope-Type Intramolecular Hydroamination -- 3 Hydroamination of Dienes -- 3.1 Intermolecular Hydroamination of Dienes -- 3.2 Intramolecular Hydroamination of Aminodienes -- 4 Hydroamination of Allenes -- 4.1 Intermolecular Hydroamination of Allenes -- 4.2 Intramolecular Hydroamination of Aminoallenes -- 5 Hydroamination of Alkynes -- 6 Hydroamination with Enantiomerical Pure Amines -- 6.1 Hydroaminations Using Achiral Catalysts -- 6.2 Kinetic Resolution of Chiral Aminoalkenes and Aminoallenes -- 7 Synthesis of Chiral Amines via Reaction Sequences Involving Hydroamination -- 8 Conclusions -- References -- Asymmetric Reductive Amination -- 1 Introduction -- 2 Organometallic Catalysis -- 2.1 Metal Catalyzed Hydrogenation -- 2.2 Metal Catalyzed Transfer Hydrogenation -- 3 Organocatalysis -- 3.1 Hydrosilanes as Hydrogen Source -- 3.2 Hantzsch Esters as Hydrogen Source -- 4 Biocatalysis -- 4.1 ARA with Amino Acid Dehydrogenases -- 4.2 ARA with omega-Transaminases -- 5 Summary and Outlook -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...