GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Renewable energy sources. ; Smart power grids. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (388 pages)
    Edition: 1st ed.
    ISBN: 9780443141553
    DDC: 333.794
    Language: English
    Note: Front Cover -- Sustainable Energy Planning in Smart Grids -- Copyright Page -- Contents -- List of contributors -- Preface -- Acknowledgments -- 1 Energy planning for a sustainable transition to a decarbonized generation scenario -- 1.1 Introduction -- 1.2 Energy planning of electrical energy system -- 1.2.1 Energy scenarios in China -- 1.2.2 Energy scenarios in the United States -- 1.2.3 Energy scenarios in the European Union -- 1.3 Renewable energy resources for decarbonized generation -- 1.3.1 Solar photovoltaic generation -- 1.3.1.1 Grid-connected photovoltaic systems -- 1.3.1.2 Off-grid (stand-alone) photovoltaic systems -- 1.3.1.3 Solar power's role in decarbonization -- 1.3.2 Wind turbines generation -- 1.3.3 Hybrid renewable systems generation -- 1.4 Distributed generation -- 1.4.1 Microgrid and nanogrid -- 1.4.2 Operation strategies of microgrid -- 1.4.3 Nanogrids and smart homes -- 1.4.4 Energy storages -- 1.4.5 A new version of energy source and storage-vehicle-to-grid -- 1.5 Conclusion -- References -- 2 Electrical consumption and renewable profile clusterization based on k-medoids method -- 2.1 Introduction -- 2.2 Methods to select representative days -- 2.2.1 State of the art -- 2.2.2 Representative days using the k-medoids method -- 2.2.3 Background -- 2.3 Results -- 2.4 Conclusions -- References -- 3 Mapping of building energy consumption and emissions under Representative Concentration Pathway scenarios by a geographic... -- 3.1 Introduction -- 3.2 Geographic information system -- 3.3 Geographic information system computational framework for application on Representative Concentration Pathway scenarios -- 3.3.1 Obtention of climate data considering Representative Concentration Pathway scenarios -- 3.3.2 Calculation of prospective for buildings based on Representative Concentration Pathway scenarios -- 3.3.2.1 OpenStudio. , 3.3.2.2 SketchUp -- 3.3.2.3 EnergyPlus -- 3.3.3 Statistical and cartographic data input -- 3.3.4 Data processing and rendering of maps -- 3.3.5 Post-processing and color patterns for visualization -- 3.4 Framework applied to the case study of Mexico -- 3.4.1 Description of the study zone -- 3.4.2 Cartographic databases -- 3.4.3 Prospective calculation based on Representative Concentration Pathway scenarios -- 3.4.3.1 Prospective energy consumption -- 3.4.3.2 Energy consumption in cooling and related polluting emissions -- 3.5 Results -- 3.6 Conclusions -- References -- 4 Energy sector and public lighting -- Nomenclature -- 4.1 Introduction -- 4.2 The socioeconomic position of Ecuador -- 4.3 The public lighting service in Ecuador -- 4.3.1 Brief history -- 4.3.2 The reform in the public lighting sector -- 4.3.2.1 Structure of public lighting service after the reforms -- 4.3.2.1.1 Ministry of Energy and Non-Renewable Natural Resources -- 4.3.2.1.2 Agency for Regulation and Control of Electricity -- 4.3.2.1.3 Public corporations for electrical power distribution and trading -- 4.3.2.1.4 Decentralized Autonomous Governments -- 4.3.2.1.5 Ecuadorian Institute of Normalization -- 4.3.3 Installed capacity -- 4.3.3.1 Average price of energy for public lighting -- 4.3.3.2 Consumption and billing -- 4.3.3.3 Lighting system costs -- 4.3.4 Public lighting service coverage -- 4.4 Ecuadorian policies of public lighting service -- 4.4.1 State policy -- 4.4.1.1 Policies referred to in law -- 4.4.1.2 Policies referred by the MERNNR -- 4.4.2 Environmental policies -- 4.4.3 Luminotechnics laboratories -- 4.5 Problems and challenges faced by the public lighting sector -- 4.6 Conclusion and policy implications -- References -- 5 Pumped hydro energy storage systems for a sustainable energy planning -- 5.1 Introduction -- 5.2 The pumping station as an energy storage system. , 5.2.1 Energy storage and integration of renewables -- 5.2.2 Comparison of various energy storage devices -- 5.2.3 Fundamentals of pumped hydro storage -- 5.2.3.1 Type of pumped hydro storage -- 5.2.3.1.1 Quaternary -- 5.3 Determination of sites for the implementation of a pumped hydro storage -- 5.3.1 Search using geographic information system systems -- 5.3.2 Technical considerations -- 5.3.3 Environmental considerations -- 5.3.4 Territorial considerations -- 5.3.5 Peculiar modalities -- 5.3.5.1 Pumped hydro storage using seawater -- 5.3.5.2 Underground pumped hydro storage -- 5.4 Environmental impact of a pumping station -- 5.4.1 Land-use change -- 5.4.2 Troglobionts adapted to caves -- 5.4.3 The creation of reservoirs and biodiversity -- 5.5 Particular cases in the Canary Islands -- 5.5.1 Gran Canaria Isle -- 5.5.2 Tenerife Isle -- 5.5.3 El Hierro Isle -- 5.5.4 La Gomera Isle -- 5.5.5 Lanzarote-Fuerteventura-La Graciosa electric system -- 5.6 Conclusions -- References -- 6 Renewable energy-driven heat pumps decarbonization potential in existing buildings -- Nomenclature -- 6.1 Introduction -- 6.1.1 Energy demand scenario -- 6.1.2 Energy consumption in buildings -- 6.1.3 Energy objectives in Europe -- 6.2 Methodology -- 6.2.1 Proposed heat pumps heating and cooling transition system -- 6.2.2 Proposed methodology and analysis -- 6.3 Scenario modeling and case study -- 6.3.1 Case study: Spain building heating and cooling systems electrification roadmap -- 6.3.2 Characterization and scenarios -- 6.3.3 Simulation for the 2030 and 2050 scenarios -- 6.4 Results and analysis -- 6.4.1 Analysis of different scenarios -- 6.4.2 Energy scenarios and emissions savings -- 6.4.3 Optimization proposals -- 6.4.4 Economic aspect -- 6.4.5 Proposed roadmap -- 6.5 Conclusions -- References. , 7 Households participation in energy communities with large integration of renewables -- 7.1 Introduction -- 7.2 Background on energy communities and renewables integration -- 7.3 Demand response in energy communities -- 7.3.1 Identification of demand response opportunities -- 7.3.2 Participants ranking -- 7.3.3 Participants' invitation to the demand response event -- 7.3.4 Real-time monitoring -- 7.4 Energy communities case study -- 7.4.1 End-user's participation in the demand response -- 7.4.1.1 Case study -- 7.4.1.2 Results -- 7.4.1.3 Discussion -- 7.4.2 IoT devices' participation in demand response models -- 7.4.2.1 Case study -- 7.4.2.2 Results -- 7.4.2.3 Discussion -- 7.5 Conclusions -- Funding -- References -- 8 Hybrid generation system based on nonconventional energy sources for artisanal fishing -- 8.1 Introduction -- 8.2 Colombian energy potential -- 8.2.1 Photovoltaic solar energy -- 8.2.2 Wind power -- 8.2.3 Energy of ocean currents -- 8.2.4 Ocean thermal energy conversion -- 8.2.5 Wave energy -- 8.2.6 Tidal energy -- 8.2.7 Salinity gradient energy -- 8.3 Methodology -- 8.3.1 Problem structuring -- 8.3.1.1 Main problem -- 8.3.1.2 Determination of criteria to be used in the model -- 8.3.1.3 Identify alternatives -- 8.3.2 Problem analysis -- 8.3.2.1 Evaluate alternatives -- 8.3.2.2 Select alternatives -- 8.4 Results and discussion -- 8.4.1 Energy demand baseline -- 8.4.2 Equipment selection -- 8.4.2.1 Electric propulsion system -- 8.4.2.2 Load profile and daily consumption of the vessel -- 8.4.2.3 Photovoltaic solar system -- 8.4.2.4 Diesel generation system -- 8.5 Conclusions -- References -- 9 Analysis and proposal of energy planning and renewable energy plans -- Nomenclature -- Formulae -- 9.1 Introduction -- 9.1.1 Background -- 9.1.2 Previous work -- 9.2 Data and methodology -- 9.2.1 EnergyPLAN model -- 9.2.2 Situation in South America. , 9.2.2.1 South America energy expectation -- 9.2.2.2 Incidence of renewable energies in South America -- 9.2.2.3 South America and predisposition for renewable energy -- 9.2.3 Ecuadorian energy context -- 9.2.3.1 History of net energy production -- 9.2.3.2 Energy production by generation source -- 9.2.3.3 History of total demand -- 9.2.3.4 International electricity transactions with Colombia and Peru -- 9.2.3.5 Energy efficiency strategies -- 9.2.4 Energy model with a vision to 2050 -- 9.2.4.1 Technical effects -- 9.2.4.2 Cost of energy -- 9.2.4.3 Human development index -- 9.3 Results and discussion -- 9.3.1 Economic analysis -- 9.3.2 Policies on Ecuadorian 100% renewable electricity generation system by 2050 -- 9.3.3 Discussion -- 9.4 Conclusions and recommendations -- 9.5 Expressions of gratitude -- References -- 10 Optimal siting and sizing of renewable energy-based distributed generation in distribution systems considering CO2 emissions -- Nomenclature -- Sets and indices -- Parameters -- Continuous variables -- Integer-valued continuous variables -- Binary-valued continuous variables -- Binary variables -- Integer variables -- 10.1 Introduction -- 10.1.1 Distributed generation -- 10.1.2 Energy storage units -- 10.1.3 Literature review on distribution system planning -- 10.1.4 Objectives and organization of the chapter -- 10.2 Uncertainty modeling -- 10.2.1 Uncertainty modeling in the distribution system planning problem -- 10.3 Mathematical modeling of the problem -- 10.3.1 Steady-state operation of radial electricity distribution networks -- 10.3.2 Linearization of the power flow equations -- 10.3.3 Operational limits of the electric energy distribution system -- 10.3.4 Operation model of renewable dispatchable DG units -- 10.3.5 Operation model of photovoltaic systems -- 10.3.6 Operation model of wind turbine systems. , 10.3.7 Operation of energy storage systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...