GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    New York :Nova Science Publishers, Incorporated,
    Schlagwort(e): Chemistry-Research. ; Chemistry. ; Chemistry-Study and teaching. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (326 pages)
    Ausgabe: 1st ed.
    ISBN: 9798891131118
    Serie: Advances in Chemistry Research Series
    DDC: 540.71
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- Preface -- Chapter 1 -- Uranium Dioxide Powder Synthesis, Pressing and Sintering: A Review -- Abstract -- Introduction -- Section 1: Powder Characterization -- 1.1. Sieve Analysis -- 1.2. BET Specific Surface Area -- 1.3. Average Particle Size -- 1.4. A Product and a Ratio -- 1.5. Particle Size Distribution -- 1.6. Dilatometry -- 1.7. Scanning Electron Microscopy -- Section 2: Powder Synthesis -- 2.1. Powder Flowability, Formability and Sinterability -- 2.2. Crystallization and Precipitation -- 2.3. Types of Precipitates -- 2.4. Precipitation of Ammonium Diuranate (ADU) -- 2.5. Decomposition of ADU and Calcination -- 2.6. Soft and Hard Powders -- Section 3: Powder Conditioning -- 3.1. Stabilization of UO2 Powder -- 3.2. Parameters for Flow Properties of Bulk Solids -- 3.3. Powder Milling -- 3.4. Granulation -- 3.5. Binders and Lubricants -- Section 4. Pressing -- 4.1. UO2 Powder to Pellet -- 4.2. The Significance of Green Density in Sintering -- 4.3. Porosity in the Green Compact -- 4.4. Density Gradients in a Green Pellet -- 4.5. Estimating Die Bore Diameter -- Section 5: Sintering -- 5.1. Driving Force for Sintering -- 5.2. Effect of Calcination/Reduction Temperature of Powder on Sintering -- 5.3. Green Density, Temperature, and Sintered Density -- 5.4. Porosity Effects -- 5.5. Pore Shape, Size, and Stability -- 5.6. Densification and Coarsening -- 5.7. Furnace Gas Flow Effects -- Section 6. Grain Growth and Pore Stability in Sintering -- 6.1. Driving Force for Grain Growth -- 6.2. Pore Growth Caused by Grain Growth -- 6.3. Pore Stability versus Dihedral Angle and Grain Coordination Number -- 6.4. Grain Growth in Uranium Dioxide -- Section 7: Non-Stoichiometry and Point Defect Chemistry -- 7.1. Non-Stoichiometry in UO2 -- 7.2. Mass Transport in Sintering -- 7.3. Kroger-Vink Notation for Point Defects (Kofstad, 1972). , 7.4. Effect of Atmosphere on UO2 Defect Structure -- 7.5. Effect of Additive/Impurity on UO2 Defect Structure -- 7.6. Defect Clustering in UO2 -- Section 8: Defects in Pellets - Agglomerate Effects -- 8.1. Grain, Particle, Granule and Agglomerate -- 8.2. Effect of Agglomerates on Sintered Density -- 8.3. Effects of Physical Inhomogeneity in Green Bodies -- 8.4. Pores Caused by Agglomerates and Agglomerated Additives -- 8.5. Caking as a Source of Agglomerates in Powder -- 8.6. Classification of Defects Based on Size -- Section 9: Defects in UO2 Pellets - Capping, Cracking, and Unground Surface -- 9.1. Capping, Lamination due to Air Entrapment -- 9.2. Stresses in a Compact -- 9.3. Lamination due to Insufficient Exit die Taper -- 9.4. End Capping during Decompression -- 9.5. Unground Patches -- 9.6. Other Defects -- Section 10: Summary -- Disclaimer -- Acknowledgments -- References -- Chapter 2 -- The Role of Catalysts' Bifunctionality in a Multistage Process -- Abstract -- Introduction -- Bifunctional Catalysts in Oxidation-Reduction Processes with Participation of "Small Molecules" -- Reduction of Nitrogen Oxides (NOx) with Hydrocarbons -- Catalytic Conversion of Nitrous Oxide, N2O -- Partial Oxidation of C3-C4 Alkanes -- Selective Oxidation of Ethylene: С2Н4 + N2O → С2Н4О + N2 -- Deep Methane Oxidation -- СО2 (Dry)-Reforming of Methane -- Bifunctionality of Catalysts in Tandem Processes of (Bio)Ethanol Conversion -- Bifunctionality of Complex Oxide Catalysts for 1,3-Butadiene Production from Ethanol -- "Bifunctionality" of Solid-Phase Catalysts in Guerbet Condensation of C2, C4 Alcohols -- Mg-Al-Oxide Systems -- Hydroxyapatite -- Bifunctional Metal-Zeolite Catalysts of the BEA Structure in Current Processes -- Zeolites Ag/BEA in the Selective Catalytic Reduction of NO by Ethanol. , Modification BEA Zeolites for the Production of 1,3-Butadiene from Ethanol -- Zn, Ga (Ta, Nb)-BEA Catalysts in CO2-Assisted Propane Dehydrogenation Process -- Conclusion -- References -- Chapter 3 -- The Design of Efficient Bifunctional Catalysts for the Successful Application of Tandem Catalysis in One-Pot Processes -- Abstract -- Role of Catalysis on the Sustainability of Chemical Synthesis and Industry -- Relevance and Classification of One-Pot Processes -- Bifunctional Catalysts as Key Tools for Tandem Catalysis -- Design of Bifunctional Solid Materials for Tandem Catalysis in One-Pot Processes -- Application of Different Approaches for Designing a Bifunctional Catalytic System: The Case of the Production of Pentyl Valerate Biofuel from (-Valerolactone -- Disclaimer -- References -- Chapter 4 -- Organic Materials for Energy Storage in Lithium Batteries -- Abstract -- 1. Introduction -- 2. Conventional Inorganic Electrode Materials -- 2.1. Cathode Materials -- 2.1.1. Lithium Cobalt Oxide (LCO) -- 2.1.2. Nickel-Based Layered Materials (LNO, Ni-rich NCM, or NCA) -- 2.1.3 .LiFePO4 (LFP) -- 2.1.4. LiMn2O4 (LMO) -- 2.2. Anode Materials -- 2.2.1. Graphite -- 2.2.2. Li-Metal -- 2.2.3. Si-Based Materials -- 2.3. Disadvantages of Inorganic Electrode Materials -- 3. Organic Electrode Materials and Their History -- 3.1. Classification of OEMs -- 3.1.1. Redox Mechanism of OEMs -- 3.1.1.1. P-type OEMs -- 3.1.1.2. N-type OEMs -- 3.1.1.3. Bipolar OEMs -- 3.1.2. Redox Centers of OEMs -- 3.1.2.1. Carbonyl (C = O) -- 3.1.2.2. Sulfur (R - S - R') -- 3.1.2.3. Nitrogen (R - N - R') -- 3.1.2.4. Overlithiation (C = C) -- 3.1.2.5. Conducting Polymers -- 3.1.2.6. Radicals -- 3.2. Advantages of OEMs -- 3.2.1. Abundant in Nature -- 3.2.2. Environmentally Friendly -- 3.2.3. Structural Tunablility -- 3.2.4. Flexible Molecular Structure. , 3.2.5. Feasible to Match with Diverse Ions -- 3.3. Challenges of OEMs -- 3.4. Strategies for Addressing the Limitations of OEMs -- 3.4.1. Electronic Conductivity -- 3.4.1.1. Strong Aromaticity -- 3.4.1.2. Polymerization -- 3.4.2. Specific Capacity -- 3.4.2.1. Increasing Li Reaction Sites -- 3.4.2.2. Reducing the Molecular Weight -- 3.4.3. Operating Voltage -- 3.4.3.1. Introducing heteroatoms -- 3.4.4. Dissolution in Electrolyte -- 3.4.4.1. Polymerization -- 3.4.4.2. Solid Electrolyte (SE) System -- Conclusion -- Disclaimer -- Acknowledgment -- References -- Chapter 5 -- Chalcone: A Versatile Tool of Medicinal and Synthetic Organic Chemistry -- Abstract -- Introduction -- Synthesis of Chalcones -- Biosynthesis of Chalcones -- Chemical Synthesis of Chalcones -- Claisen-Schmidt Condensation Reaction -- Friedel-Craft Acylation Reaction -- Photo-Fries Rearrangement Reaction -- Cross-Coupling Reaction -- Suzuki-Miyaura Coupling Reaction -- Carbonylative Heck Coupling Reaction -- Sonogashira Isomerization Coupling Reaction -- The Solid Acid-Catalyzed Coupling Reaction -- Wittig Olefination for Chalcone Synthesis -- Julia−Kocienski Olefination -- Modern Method of Coupling Reaction for Chalcone Synthesis -- One Pot Synthesis of Chalcones -- Properties of Chalcones -- Fluorescent Properties of Chalcones -- Spectral Properties -- Application of Chalcones -- Medicinal Applications -- Chalcones as Antioxidant -- Chemo-Preventive Chalcones -- Anti-Inflammatory Property of Chalcones -- Anti-Cancer Activity -- Anti-Microbial Activity -- Anti-Diabetic Activity of Chalcones -- Cytotoxicity of Chalcones -- Antiviral Activity of Chalcones -- Anti-Tuberculosis Activity of Chalcones -- Anti-Ulcer Activity of Chalcones -- Application in Organic Synthesis -- Flavone Synthesis -- Seven-Membered Diazepine Synthesis -- Six-Membered Heterocycles Synthesis from Chalcones. , Five-Membered Heterocycles Synthesis -- Epoxidation of Chalcones -- Conclusion -- References -- Chapter 6 -- Quinol Ethers of Para-Benzoquinone Dioxime -- Abstract -- Introduction -- Quinol Ethers of Para-Benzoquinone Dioxime as Vulcanizing Agents for Unsaturated Rubbers -- Investigation of Mono-Nitrosoarenes as Accelerators for the Vulcanization of Unsaturated Rubbers with Quinol Ether EQ-1 -- Development of a Method for Obtaining Quinol Ether EQ-1 Using Calcium Hypochlorite as an Oxidant -- Method for Obtaining Quiol Ether EQ-10 by Reacting 2,4,6-Tri-Tert-Butylphenol with 2-Methyl-5-Isopropyl-p-dinitrosobenzene -- The Development of a New Pliable Arts& -- Crafts Material - The Plasticine, that Turns Rubber, a.k.a. Klyuchnikovs Rubber Plasticine -- Conclusion -- References -- Biographical Sketches -- Chapter 7 -- Citric Acid Applications in the Textile Chemical Processing Industry -- Abstract -- 1. Introduction -- 1.1. Citric Acid in Silk Degumming -- 1.2. Citric Acid in Dyeing -- 1.3. Citric Acid in Flame Retardant Finishing in Textiles -- 1.4. Citric Acid in Self Cleaning Finishing in Textiles -- 1.5. Citric Acid in Antimicrobial Finishing of Textiles -- 1.6. Citric Acid in Multi Functional Finishing of Textiles -- 1.7. Citric Acid in Crease Resistance Finishing of Textiles -- 2. Experimental Details -- 2.1. Materials Used -- 2.2. Finishing Method -- 2.3. Characterization Methods -- 3. Results and Discussion -- Conclusion -- Acknowledgment -- References -- Chapter 8 -- Aluminium Silicate-Assisted Synthesis of Sulfonyl Hydrazides in the Absence of Solvent -- Abstract -- 1. Introduction -- 2. Experimental Section -- General Experimental Information -- General Procedure for Synthesis of Sulfonyl Hydrazides -- 3. Results and Discussion -- Conclusion -- References -- Contents of Earlier Volumes -- Index -- Blank Page -- Blank Page.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...