GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Light -- Scattering. ; Radiative transfer. ; Electronic books.
    Description / Table of Contents: This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.
    Type of Medium: Online Resource
    Pages: 1 online resource (437 pages)
    Edition: 1st ed.
    ISBN: 9783642379857
    Series Statement: Springer Praxis Bks.
    DDC: 535.43
    Language: English
    Note: Intro -- Contents -- List of Contributors -- Preface -- Part I Light Scattering -- 1 Light scattering by atmospheric mineral dust particles -- 1.1 Introduction -- 1.2 Physical properties of dust particles -- 1.2.1 Composition, structure, and shape -- 1.2.2 Mineral dust size distribution -- 1.3 Light-scattering measurements -- 1.4 Light-scattering modeling -- 1.4.1 Definitions -- 1.4.2 Models with simple homogeneous particles -- 1.4.2.1 Spheres -- 1.4.2.2 Spheroids -- 1.4.2.3 Ellipsoids -- 1.4.2.4 Polyhedra -- 1.4.3 Models with complex anisotropic, and inhomogeneous particles -- 1.4.3.1 Homogeneous, isotropic models -- 1.4.3.2 Inhomogeneous or anisotropic models -- 1.4.4 Impact of morphological details and anisotropy on scattering -- 1.4.4.1 Surface roughness -- 1.4.4.2 Inhomogeneity -- 1.4.4.3 Material anisotropy -- 1.5 Discussion and conclusions -- Acknowledgments -- References -- 2 A review of approximate analytic light-scattering phase functions -- 2.1 Introduction -- 2.2 Scattering phase function as a series expansion -- 2.2.1 Expansion in terms of Legendre polynomials -- 2.2.2 The Rayleigh phase function (RPF) -- 2.2.3 The δ −M phase function approximation -- 2.2.4 Peak truncated phase functions -- 2.3 Parametrized phase functions -- 2.3.1 One-parameter phase functions -- 2.3.1.1 The Henyey-Greenstein phase function (HGPF) -- 2.3.1.2 Combined Henyey-Greenstein (HGPF) and Rayleigh phase function -- 2.3.1.3 The Neer-Sandri phase function (NSPF) -- 2.3.1.4 Kagiwada-Kalaba phase function (KKPF) -- 2.3.1.5 The Schlick phase function -- 2.3.1.6 The binomial phase function -- 2.3.1.7 The delta-hyperbolic phase function -- 2.3.1.8 The transport phase function (TPF) -- 2.3.2 Two-parameter phase functions -- 2.3.2.1 The modified Henyey-Greenstein phase function -- 2.3.2.2 The Gegenbauer kernel phase function (GKPF). , 2.3.2.3 The delta-Eddington phase function -- 2.3.2.4 The Liu phase function (LPF) -- 2.3.2.5 The Draine phase function (DPF) -- 2.3.2.6 Phase function for planetary regoliths -- 2.3.3 Three-parameter phase functions (TPPF) -- 2.3.4 Five-parameter phase function -- 2.3.5 Six-parameter phase function -- 2.4 Analytic phase functions dependent on microphysical particle characteristics -- 2.4.1 Phase functions for small spherical particles -- 2.4.2 Larger particles -- 2.4.3 Zhao phase function (ZPF) -- 2.5 Densely packed particles -- 2.6 Role of phase function in ray tracing by the Monte Carlo method -- 2.7 Distribution-specific analytic phase functions -- 2.7.1 Rayleigh-Gans phase function for modified gamma distribution -- 2.7.2 Junge size distribution -- 2.7.3 Phase function for ice clouds -- 2.8 Concluding remarks -- References -- 3 Scattering of electromagnetic plane waves in radially inhomogeneous media: ray theory, exact solutions and connections with po -- 3.1 Complementary levels of description in light scattering -- 3.2 Scattering by a transparent sphere: ray description -- 3.2.1 The ray path integral -- 3.3 Analysis of specific profiles -- 3.4 The generation of exact solutions for radially inhomogeneous media -- 3.4.1 A summary of the method -- 3.4.2 Specific profiles -- 3.4.2.1 Spherically stratified isotropic media -- 3.4.2.2 Cylindrically stratified isotropic media -- 3.4.3 The non-existence of bound state solutions -- 3.5 Scalar wave scattering by a transparent sphere -- 3.5.1 Morphology-dependent resonances: the effective potential Ul(r) (constant n) -- 3.6 Connection with the scattering matrix -- 3.7 The vector problem: the Mie solution of electromagnetic scattering theory -- 3.8 Conclusion -- Appendix 1: Properties of η(r) and interpretation of the ray path integral -- Appendix 2: Poles and resonances on the k-plane and E-plane. , References -- Part II Remote Sensing -- 4 Spectral dependence of MODIS cloud droplet effective radius retrievals for marine boundary layer clouds -- 4.1 Introduction -- 4.2 Operational MODIS re retrieval algorithm -- 4.3 Spectral dependence of MODIS re retrievals for MBL clouds -- 4.3.1 Geographical pattern -- 4.3.2 Correlation with key cloud parameters -- 4.4 Potential reasons for the spectral difference -- 4.4.1 Random error -- 4.4.2 Vertical cloud structure -- 4.4.3 Cloud droplet size distribution -- 4.4.4 Plane-parallel re bias -- 4.4.5 3D radiative transfer effect -- 4.5 Discussion -- 4.5.1 Which one is better? -- 4.5.2 Cloud regime classification -- 4.6 Outlook of future work -- Acknowledgments -- References -- 5 Remote sensing of above cloud aerosols -- 5.1 Introduction -- 5.2 Above cloud aerosols (ACA), and their role in climate -- 5.2.1 Direct effects -- 5.2.2 Indirect and semi-direct effects -- 5.3 Orbital observations of ACA -- 5.3.1 Passive ultraviolet (UV) observations -- 5.3.1.1 Physical basis -- 5.3.1.2 Sources of uncertainty -- 5.3.2 Passive visible (VIS) near-infrared (NIR) observations -- 5.3.2.1 Physical basis -- 5.3.2.2 Sources of uncertainty -- 5.3.2.3 Ongoing developments -- 5.3.3 Passive hyperspectral observations -- 5.3.3.1 Physical basis -- 5.3.3.2 Sources of uncertainty -- 5.3.4 Passive polarimetric observations -- 5.3.4.1 Physical basis -- 5.3.4.2 Sources of uncertainty -- 5.3.4.3 Ongoing developments -- 5.3.5 Active Lidar observations -- 5.3.5.1 Physical basis -- 5.3.5.2 Sources of uncertainty -- 5.3.5.3 Validation and assessment -- 5.3.5.4 Ongoing developments -- 5.4 Validation with in situ and suborbital observations -- 5.4.1 In situ observations from field campaigns -- 5.4.2 Airborne sunphotometers -- 5.4.3 Active sensors -- 5.4.4 Spectrometers -- 5.4.5 Airborne polarimeters. , 5.4.6 RF assessment using observational data and regional climate models -- 5.5 The future for ACA retrievals -- 5.5.1 Upcoming orbital opportunities -- 5.5.2 Data fusion -- 5.5.3 Recommendations for future instruments -- 5.6 Conclusion -- Acronyms and symbols -- References -- Part III Polarimetry -- 6 Principles of the Mueller matrix measurements -- 6.1 Introduction -- 6.2 Mathematics of the Mueller matrix method -- 6.3 Complete Mueller polarimetry -- 6.4 Physical realizability of the experimental Mueller matrix -- 6.5 Partial Mueller polarimetry -- 6.6 Mueller polarimeter optimization -- 6.7 Conclusions -- Appendix A: Some multiplicative and additive Mueller matrix models -- References -- 7 Reflectance and polarization characteristics of various vegetation types -- 7.1 Introduction -- 7.2 Definitions -- 7.2.1 BRF, BRDF -- 7.2.2 Polarization -- 7.3 Theory and modeling -- 7.4 Field and laboratory measurements -- 7.5 Analysis -- 7.5.1 Special features by species -- 7.6 Discussion on specific remote sensing signatures -- 7.6.1 Heterogeneity, or spatial variations -- 7.6.2 Anisotropy -- 7.6.3 Spectral signature -- 7.6.4 Polarization-any new signals? -- 7.7 Discussion on measurement principles -- 7.8 Conclusions -- Acknowledgements -- References -- Part IV Radiative Forcing -- 8 Diurnally averaged direct aerosol-induced radiative forcing from cloud-free sky field measurements performed during seven regi -- 8.1 Introduction -- 8.2 Definitions of diurnally averaged DARF at the ToAand BoA-levels and within the atmosphere -- 8.2.1 The instantaneous DARF effects at ToAand BoA-levels and in the atmosphere -- 8.2.2 Diurnally averaged DARF and aerosol fractional forcing -- 8.2.3 DARF efficiency -- 8.3 Field measurements and calculations of the diurnally averaged DARF at the ToAand BoA-levels and in the atmosphere, with corr. , 8.3.1 DARF evaluations from the CLEARCOLUMN (ACE-2) field measurements in southern Portugal -- 8.3.2 DARF evaluations from the PRIN-2004 project measurements in southern Italy -- 8.3.3 DARF evaluations obtained from the AEROCLOUDS project measurements in northern Italy -- 8.3.4 DARF evaluations from the Ev-K2-CNR project measurements in Himalaya (Nepal) -- 8.3.5 DARF evaluations from the POLAR-AOD project measurements performed at Arctic and Antarctic sites -- 8.3.6 DARF evaluations from the Aerosols99 measurements in the Atlantic Ocean -- 8.3.7 DARF evaluations from the DOE/ARM/AIOP project field measurements in north-central Oklahoma -- 8.4 Conclusions -- Acknowledgements -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...