GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Seawater -- Organic compound content. ; Chemical oceanography. ; Biogeochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (712 pages)
    Edition: 2nd ed.
    ISBN: 9780124071537
    DDC: 551.46/6
    Language: English
    Note: Front Cover -- Biogeochemistry of Marine Dissolved Organic Matter -- Copyright -- Dedication -- Contents -- List of Contributors -- Foreword -- References -- Preface -- Chapter 1: Why Dissolved Organics Matter: DOC in Ancient Oceans and Past Climate Change -- I. Overview -- II. Marine Carbon Cycling -- A. A Tale of Three Ocean Carbon "Pumps" -- B. A Fourth Appears-The Microbial Carbon Pump -- III. Interpreting the Geological Past -- A. Carbon Isotopes as Proxies for Past Global Carbon Cycle Changes -- B. Reconstructing Past Steady-State Modes of Global Carbon Cycling -- C. Interpreting Transient Carbon Cycle Perturbations -- D. Ocean DOC and Ancient Carbon Cycling: An Example from the Paleocene and Eocene -- E. Ocean DOC and Ancient Carbon Cycling: An Example from the Precambrian -- IV. Implications for Future Global Change? -- Acknowledgements -- References -- Chapter 2: Chemical Characterization and Cycling of Dissolved Organic Matter -- I. Introduction -- II. Isolation of DOM from Seawater -- A. Isolation of Hydrophobic DOM by Solid-Phase Extraction -- B. Isolation of High Molecular Weight DOM by Ultrafiltration -- C. Isolation of DOM by Reverse Osmosis/Electrically Assisted Dialysis -- III. Chemical Characterization of DOM -- A. Polysaccharides in DOM -- B. Proteins and Amino Acids in DOM -- C. Humic Substances in Solid-Phase Extractable DOM (SPE-DOM) -- 1. Characterization of SPE-DOM by High-Field NMR -- 2. Characterization of SPE-DOM by High-Resolution MS -- IV. Links Between DOM Composition and Cycling -- A. Composition and the Cycling of Labile DOM -- B. Composition and the Cycling of Semi-Labile DOM -- C. Composition and the Cycling of Refractory DOM -- V. Future Research -- Acknowledgments -- References -- Chapter 3: DOM Sources, Sinks, Reactivity, and Budgets -- I. Introduction -- II. DOM Production Processes. , A. Extracellular Phytoplankton Production -- 1. Extracellular Release Models -- a. Overflow Model -- b. Passive Diffusion Mode -- c. Model Comparison -- 2. Experimental and Field Observations -- a. Using Radioisotopic Tracers -- b. Microcosm, Mesocosm, and Field Observations -- c. ER Quality and Transparent Exopolymer Particles -- B. Grazer-Induced DOM Production -- 1. Herbivory -- a. Mesozooplankton -- b. Microzooplankton -- 2. Omnivory and Carnivory -- 3. Bacterivory -- 4. Biogeochemical Significance -- C. DOM Production via Cell Lysis -- 1. Viral Lysis and the Viral Shunt -- a. Biogeochemical Significance -- 2. Bacterial Lysis -- 3. Allelopathy -- D. Solubilization of Particles -- E. Prokaryote Production of DOM -- 1. Chemoautotrophy -- 2. Chemoheterotrophy -- III. DOM Removal Processes -- A. Biotic Consumption of DOM -- 1. Prokaryotes -- a. Bacterial Growth Efficiency -- b. Bacterial Carbon Demand -- c. Photoheterotrophy -- 2. Eukaryotes -- B. Abiotic Removal Processes -- 1. Phototransformation -- 2. Sorption of DOM onto Particles -- 3. Condensation of Marine Microgels -- 4. Hydrothermal Circulation -- IV. DOM Accumulation -- A. Abiotic Formation of Biologically Recalcitrant DOM -- B. Biotic Formation of Recalcitrant DOM -- 1. Microbial Carbon Pump -- a. Direct Source via the MCP -- b. Microbial Transformation -- c. Time Scales of DOM Persistence -- 2. Limitation of Microbial Growth and DOM Accumulation -- 3. Eukaryote Source of Recalcitrant DOM -- C. Neutral Molecules and Preservation -- D. Biogeochemical Implications of Organic Matter Partitioning into Recalcitrant DOM -- V. DOM Reactivity -- A. Biologically Labile DOM -- B. Biologically Semi-labile and Semi-refractory DOM -- 1. SLDOC -- 2. SRDOC -- C. Biologically Refractory and Ultra-refractory DOM Pools -- 1. URDOC -- 2. RDOC -- VI. The Priming Effect. , VII. Microbial Community Structure and DOM Utilization -- VIII. DOC in the Ocean Carbon Budget -- A. Autochthonous Sources -- 1. Epipelagic -- 2. Ocean Interior -- a. Deep Chemoautotrophy -- B. Allochthonous Sources -- IX. Summary -- Acknowledgments -- References -- Chapter 4: Dynamics of Dissolved Organic Nitrogen -- I. Introduction -- II. DON Concentrations in Aquatic Environments -- A. Methods to Measure DON Concentrations -- B. Global Distributions and Fate -- C. Cross System Comparison -- D. Seasonal Variations -- III. Composition of the DON Pool -- A. Chemical Composition-Characterizable DON -- 1. Urea -- 2. Amino Acids -- 3. Humic and Fulvic Substances -- 4. Other Organic Compounds -- B. Chemical Composition-Opening the Black Box of Uncharacterized DON -- 1. DON Isolation Methods -- 2. DON Characterization Methods -- 3. Chemical Characteristics of Marine DON -- C. Concentration and Composition of the DON Pool: Research Priorities -- IV. Sources of DON to the Water Column -- A. Autochthonous Sources -- 1. Phytoplankton -- 2. N 2 Fixers -- 3. Bacteria -- 4. Micro- and Macrozooplankton -- 5. Viruses -- B. Allochthonous Sources -- 1. Rivers -- 2. Groundwater -- 3. Atmospheric Deposition -- C. Methods to Estimate Rates of Autochthonous DON Release -- D. Literature Values of DON Release Rates in Aquatic Environments -- 1. Bulk DON -- 2. Urea -- 3. Amino Acids and Other Organics -- E. Sources of DON: Research Priorities -- V. Sinks for DON -- A. DON Bioavailability -- B. Methods to Estimate Rates of DON Uptake -- 1. Measuring Uptake Rates -- 2. Determining Which Organisms Contribute to Uptake -- 3. Flow Cytometric Sorting -- 4. Molecular Approaches -- 5. Stable Isotope Probing -- C. Mechanisms that Contribute to DON Bioavailability -- 1. Enzymatic Decomposition -- 2. Pinocytosis -- 3. Photochemistry -- 4. Salinity-mediated Uptake. , D. Literature Values of DON Uptake in Aquatic Environments -- 1. Bulk DON -- 2. Urea -- 3. Amino Acids -- 4. Humic Substances -- 5. Other Organic Compounds -- E. Sinks for DON: Research Priorities -- VI. Summary -- A. DON Concentrations in Aquatic Environments -- B. Composition of the DON Pool -- C. Sources of DON to the Water Column -- D. Sinks for DON -- Acknowledgments -- References -- Chapter 5: Dynamics of Dissolved Organic Phosphorus -- I. Introduction -- II. Terms, Definitions, and Concentration Units -- III. The Early Years of Pelagic Marine P-Cycle Research (1884-1955) -- IV. The Pelagic Marine P-Cycle: Key Pools and Processes -- V. Sampling, Incubation, Storage, and Analytical Considerations -- A. Sampling -- B. Sample Processing, Preservation, and Storage -- C. Detection of P i and P-Containing Compounds in Seawater -- 1. Analysis of Pi -- 2. Analysis of TDP -- D. Analytical Interferences in SRP and TDP Estimation -- E. Use of Isotopic Tracers in P-cycle Research -- VI. DOP in the Sea: Variations in Space -- A. Regional and Depth Variations in DOP -- B. DOP Concentrations in the Deep Sea -- C. Stoichiometry of Dissolved and Particulate Matter Pools -- VII. DOP in the Sea: Variations in Time -- A. English Channel -- B. North Pacific Subtropical Gyre -- C. Eastern Mediterranean Sea -- VIII. DOP Pool Characterization -- A. Molecular Weight Characterization of the DOP Pool -- B. DOP Pool Characterization by Enzymatic Reactivity -- C. DOP Pool Characterization by 31 P-NMR -- D. DOP Pool Characterization by Partial Photochemical Oxidation -- E. Direct Measurement of DOP Compounds -- 1. Nucleic Acids -- 2. ATP and Related Nucleotides -- 3. Cyclic AMP -- 4. Lipids -- 5. Vitamins -- 6. Inorganic Poly-Pi and Pyro-Pi -- F. Biologically Available P -- G. DOP: The "Majority" View -- IX. DOP Production, Utilization, and Remineralization. , A. DOP Production and Remineralization -- B. Direct Utilization of DOP -- C. The Methylphosphonate "Cycle" -- D. Enzymes as P-cycle Facilitators -- E. Taxon-specific DOP Uptake -- F. DOP Interactions with Light and Suspended Minerals -- X. Conclusions and Prospectus -- Acknowledgments -- References -- Chapter 6: The Carbon Isotopic Composition of Marine DOC -- I. Introduction -- II. Carbon Isotope Geochemistry Primer -- A. Carbon-13 and Stable Isotope Systematics -- B. Carbon-14 -- III. DOC Isotope Ratio Methods -- IV. Isotopic Composition of Bulk Marine DOC -- A. The First Measurements -- B. The First δ 13 C and Δ 14 C Depth Profiles -- C. New Depth Profiles and Spatiotemporal Variability -- D. Mass Balance Constraints on Bulk Δ 14 C Values -- V. Isotopic Composition of DOM Constituents -- A. Characterization by Size Fractions -- B. Characterization by Compounds and Compound Classes -- VI. Summary and Conclusions -- Acknowledgments -- References -- Chapter 7: Reasons Behind the Long-Term Stability of Dissolved Organic Matter -- I. Introduction: The Paradox of DOM Persistence -- II. The Environment Hypothesis -- III. The Intrinsic Stability Hypothesis -- IV. The Molecular Diversity Hypothesis -- V. Concluding Remarks -- Acknowledgments -- References -- Chapter 8: Marine Photochemistry of Organic Matter: Processes and Impacts -- Introduction -- Impact of Photochemistry on Elemental Cycles -- Carbon -- Coupled Photochemical-Microbial DOC Degradation: Impact on Marine Food Web Dynamics -- Photochemical DIC Formation and Oxygen Consumption -- DIC Photoproduction -- DIC Photoproduction and Photochemical Oxygen Consumption, and Mechanisms of DIC Photoformation -- Carbon Monoxide Photoproduction and Transfer to the Atmosphere -- Sulfur -- Dimethylsulphoniopropionate -- Dimethylsulfide -- Dimethylsulfoxide -- Carbonyl Sulfide -- Minor Sulfur Species. , Nitrogen and Phosphorus.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...