GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Biotechnology. ; Electronic books.
    Description / Table of Contents: Almost 95% of the world food requirement is met by 30 plant species and there is a great need to expand plant genetic diversity. This book examines research achievements in neglected and underutilized crop biotechnology to help broaden crop diversity.
    Type of Medium: Online Resource
    Pages: 1 online resource (455 pages)
    Edition: 1st ed.
    ISBN: 9789400755000
    Language: English
    Note: Intro -- Preface -- Contents -- Part I Section 1 -- 1 The Genus Chenopodium: A Potential Food Source -- Abstract -- Abbreviations -- 1.1 Introduction -- 1.2 Importance -- 1.3 Genetic Resources of Chenopodium Genus and its Use in Meso and South America -- 1.4 Cytogenetics of Chenopodium Genus -- 1.5 Fluorescent in Situ Hybridization -- 1.6 Molecular Studies on Chenopodium -- 1.6.1 Molecular Studies on Chenopodium berlandieri subsp. nuttalliae cv. Huauzontle -- 1.7 Chenopodium and Traditional Farming Systems -- 1.8 Studies Concerning Nutritional Characteristics of Chenopodium -- 1.8.1 Composition of the Oil Fraction Concerning to Essential Fatty Acids -- 1.9 Morphological Description of Floral Development in Chenopodium -- 1.9.1 Phases of Gynoecium Development -- Phase 1 -- Phase 2 -- Phase 3 -- Phase 4 -- Phase 5 -- Phase 6 -- Seed Formation -- 1.9.2 Androecium and Pollen Characterization -- Phase 1: Pollen Mother Cells (1st Meiosis) -- Phase 2: Tetrad (2nd Meiosis) -- Phase 3 and 4 (Flowers with Microspores) -- Flowers with Pollen -- 1.10 Mutation Breeding in C. quinoa -- 1.11 Conclusion and Prospects -- References -- 2 Thin Cell Layer Technology in Micropropagation of Jatropha curcas L. -- Abstract -- Abbreviations: -- 2.1 Introduction -- 2.2 Direct Shoot Organogenesis From Leaf tTCLs -- 2.3 Indirect Shoot Organogenesis and Somatic Embryogenesis from Leaf tTCLs -- 2.3.1 Callus Induction -- 2.3.2 Indirect Shoot Organogenesis -- 2.3.3 Indirect Somatic Embryogenesis -- 2.4 Conclusion and Prospects -- References -- 3 New Achievement in Panax vietnamensis Research -- Abstract -- Abbreviations -- 3.1 Introduction -- 3.2 Micropropagation and Morphogenetic Programs -- 3.2.1 Callus Induction -- 3.2.1.1 Effect of Auxin Types and Concentration on Callus Induction from Leaf and Petiole. , 3.2.1.2 Effect of Lighting Condition on Callus Induction from Leaf and Petiole -- 3.2.1.3 Effect of Auxin Types and Concentration on Callus Multiplication -- 3.2.1.4 Effect of Explant Size on Callus Development -- 3.2.2 Shoot Formation -- 3.2.2.1 Shoot Regeneration from Callus -- 3.2.2.2 Effect of BA on Shoot Development -- 3.2.2.3 Effect of Sucrose Concentration on Shoot Development -- 3.2.2.4 Effect of AC on Shoot Development -- 3.3 Adventitious Root Formation -- 3.3.1 Adventitious Root Formation from Callus -- 3.3.2 Adventitious Root Multiplication -- 3.3.3 Saponin of In Vitro Cultured P. vietnamensis Biomass -- 3.4 Conclusion and Prospects -- References -- Part II Section 2 -- 4 Molecular Biology and Physiology of the Resurrection Glacial Relic Haberlea Rhodopensis -- Abstract -- Abbreviations -- 4.1 Introduction -- 4.2 Molecular Responses of H. rhodopensis to Drought Stress and Desiccation -- 4.3 Recent Advances of Haberlea Rhodopensis Biotechnology, Future Prospects and Practical Implications -- Conclusion -- References -- 5 Cell Morphometry as Predictor of Protein Legume In Vitro Growth -- Abstract -- 5.1 Introduction -- 5.2 Cell Morphometry Parameters and Biotechnology Approaches -- 5.3 Biodiversity: When Shape Counts -- 5.4 Predicting Embryogenic Ability in Vitro: Why Bother About Thickness -- 5.5 Conclusion and Prospects -- References -- 6 Application of TILLING for Orphan Crop Improvement -- Abstract -- Abbreviations -- 6.1 Introduction -- 6.1.1 Types and Diversity of Orphan Crops -- 6.1.2 Role of Orphan Crops in Developing Countries -- 6.1.3 Major Constraints of Orphan Crops Cultivation -- 6.1.4 Need for Orphan Crop Improvement -- 6.2 Major Crop Improvement Techniques -- 6.2.1 Selection -- 6.2.2 Introgression -- 6.2.3 Mutation Breeding -- 6.2.4 In Vitro Culture -- 6.2.5 Marker-Assisted Breeding -- 6.2.6 Transgenic Approach. , 6.2.7 Orphan Crop Improvement -- 6.3 TILLING: An Efficient and Rapid Method of Mutation Discovery -- 6.3.1 History of TILLING and its Applications -- 6.3.2 The TILLING Method -- 6.3.2.1 Mutagenesis: The Critical Step in Generating Experimental Material -- Selection of the Mutagen -- Developing Mutagenized Population -- 6.3.2.2 DNA Sampling and Pooling -- 6.3.2.3 PCR Amplification -- Primer Design -- PCR Amplification and Hetero-duplex Formation -- 6.3.2.4 Mutation Detection -- 6.3.2.5 Confirmation by Sequencing -- 6.3.2.6 Estimation of Mutation Frequency -- 6.4 Beyond TILLING: What Follows Mutation Detection -- 6.5 Application of TILLING and EcoTILLING to Orphan Crops -- 6.5.1 Cassava (Manihot esculenta) -- 6.5.2 Banana and Plantain (Musa spp) -- 6.5.3 Tef (Eragrostis tef) -- 6.5.4 Pearl Millet (Pennisetum glaucum) -- 6.5.5 Chickpea (Cicer arietinum) -- 6.5.6 Mung Bean (Vigna radiata) -- 6.6 Conclusions -- References -- Part III Section 3 -- 7 Neglected Oil Crop Biotechnology -- Abstract -- Abbreviations -- 7.1 Introduction -- 7.1.1 Tissue Culture and Micropropagation -- 7.1.2 Molecular Marker Characterization of Genetic Diversity -- 7.1.3 Marker-Assisted Selection and Genomics -- 7.1.4 Genetic Engineering and the Production of Transgenic Crops -- 7.2 Vernonia galamensis (Cass.) Less. -- 7.2.1 Plant Tissue Culture -- 7.2.2 Molecular Marker Analysis -- 7.2.3 Genomics -- 7.3 Crambe abyssinica Hochst. ex R.E. Fries -- 7.3.1 Tissue Culture -- 7.3.1.1 Protoplast Fusion -- 7.3.1.2 Development of Intergeneric Hybrids Through Tissue Culture -- 7.3.1.3 Microspore Culture -- 7.3.1.4 Somatic Embryogenesis -- 7.3.2 Genetic Transformation -- 7.3.3 Molecular Marker Analysis of Genetic Diversity and Relatedness -- 7.3.4 Genomics -- 7.3.4.1 Organeller Genomics -- 7.3.4.2 Organ-Specific Expression of Highly Divergent Thionin Variants. , 7.3.4.3 Functional Characterization of the Fatty Acid Elongase Gene -- 7.3.4.4 Genomics for Phytoremediation -- 7.4 Lesquerella fendleri L. -- 7.4.1 Plant Tissue Culture -- 7.4.1.1 Ovule Culture -- 7.4.1.2 Protoplast Culture and Fusion -- 7.4.1.3 Cell Suspension Culture -- 7.4.2 Molecular Markers -- 7.4.3 Genetic Transformation -- 7.4.3.1 Biolistic Approach for Plastid Transformation -- 7.4.3.2 Agrobacterium Mediated Transformation -- 7.4.4 Genomics -- 7.5 Guizotia abyssinica (L.f.) Cass. -- 7.5.1 Plant Tissue Culture -- 7.5.2 Genetic Transformation -- 7.5.3 Molecular Techniques -- 7.5.4 Genomics -- 7.6 Camelina sativa (L.) Crantz -- 7.6.1 Plant Tissue Culture -- 7.6.1.1 Protoplast Fusion -- 7.6.1.2 Microspore Culture -- 7.6.2 Genetic Transformation -- 7.6.2.1 Transformation via Tissue Regeneration -- 7.6.2.2 In Planta Transformation -- 7.6.2.3 Floral Dip Method -- 7.6.3 Molecular Markers -- 7.6.4 Quantitative Trait Loci Analysis -- 7.6.5 Genomics -- 7.7 Brassica carinata A. Braun -- 7.7.1 Tissue Culture -- 7.7.1.1 Anther and Microspore Culture -- 7.7.1.2 Protoplast Culture and Fusion -- 7.7.2 Genetic Transformation -- 7.7.3 Molecular Markers -- 7.7.3.1 Random Amplified Polymorphic DNA -- 7.7.3.2 Simple Sequence Repeats Markers -- 7.7.3.3 Amplified Fragment Length Polymorphisms -- 7.7.4 Genomics -- 7.7.4.1 Genome Studies -- 7.7.4.2 Seed Coat and Seedling Leaf Pigmentation -- 7.7.4.3 Antisense Repression and Silencing of the Endogenous FAD2 Gene -- 7.7.4.4 Genomics for Phytoremediation by B. carinata -- 7.7.5 Proteomics -- 7.8 Sesamum indicum L. -- 7.8.1 Plant Tissue Culture -- 7.8.2 Genetic Transformation -- 7.8.3 Molecular Techniques -- 7.8.4 Marker Assisted Selection -- 7.8.5 Genomics -- 7.9 Conclusions -- References -- 8 Prospects for Quinoa (Chenopodium Quinoa Willd.) Improvement Through Biotechnology -- Abstract -- Abbreviations. , 8.1 Introduction -- 8.1.1 Quinoa Genome Structure -- 8.1.2 Genome Relationships Based on Crossability -- 8.1.3 Tools for Quinoa Genome Analysis -- 8.1.3.1 Molecular Markers -- 8.1.3.2 Expressed Sequence Tag Libraries -- 8.1.3.3 Bacterial Artificial Chromosome Libraries -- 8.1.3.4 Cytological Markers -- 8.2 Quinoa Genetic Resources -- 8.3 Quinoa Physiology and Agronomy: Targets for Crop Improvement -- 8.3.1 Physiological Targets for Quinoa Improvement -- 8.3.2 Environmental Control of Development and Genetic Variation in Responses -- 8.3.3 Crop Carbon Balance and Yield Determination -- 8.3.4 Other Targets -- 8.3.5 Conclusions Regarding Quinoa Physiology -- 8.4 Agronomic Potential for Quinoa in New Environments -- 8.4.1 Overview of Quinoa Introduction Efforts in the Eastern Hemisphere -- 8.4.2 Quinoa Introduction Efforts in Pakistan -- 8.5 Political Scenario of Quinoa Biotechnology -- 8.6 Conclusions -- References -- 9 Biotechnology of Eruca Sativa Mill -- Abstract -- Abbreviations -- 9.1 Introduction -- 9.2 E. sativa Germplasm Improvement Through Biotechnology -- 9.2.1 Intergeneric Hybrids of E. Sativa and Brassica Species -- 9.2.2 Genome Maps and Genetic Markers -- 9.3 Tissue Culture Studies in E. sativa -- 9.3.1 Organogenesis and Somatic Embryogenesis -- 9.3.2 E. Sativa Protoplasts and Embryo Rescue -- 9.3.3 Haploid Production -- 9.3.4 Agrobacterium-Mediated Transformation -- 9.4 Conclusions -- References -- 10 Biotechnology of Stylosanthes -- Abstract -- 10.1 Introduction -- 10.2 Distribution of Genetic Diversity -- 10.3 Nutritional Assessment -- 10.4 Genome Constitution and Details of Major Cultivable Species -- 10.5 Plant Systematic Study -- 10.6 Molecular Markers and Genetic Diversity Estimate -- 10.7 Abiotic and Biotic Stresses and Impact of Biotechnology -- 10.8 Genetic Engineering and Its Prospects. , 10.9 Tissue Culture and Its Impact on Stylosanthes Research.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...