GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Biomass energy. ; Electronic books.
    Description / Table of Contents: This book covers the key steps in the production of renewable biofuels from microalgae: strain selection, culture systems, inorganic carbon utilisation, lipid metabolism and quality, hydrogen production, genetic engineering, biomass harvesting, extraction.
    Type of Medium: Online Resource
    Pages: 1 online resource (290 pages)
    Edition: 1st ed.
    ISBN: 9789400754799
    Series Statement: Developments in Applied Phycology Series ; v.5
    DDC: 662.88
    Language: English
    Note: Intro -- Algae for Biofuels and Energy -- Preface -- Contents -- Contributors -- 1: Energy from Microalgae: A Short History -- 1 Introduction -- 2 The Pioneers -- 3 The Early Years (1940s & -- 1950s) -- 4 The 1960s and 1970s -- 5 Commercial Production of Microalgae -- 6 The "Algae Species Programme" (USA) -- 7 The RITE Biological CO2 Fixation Programme (Japan) -- 8 Other Work -- 8.1 Botryococcus -- 8.2 Hydrogen -- 8.3 Closed Photobioreactors -- 8.4 Downstream Processing -- 9 Conclusion -- References -- 2: Algal Lipids and Their Metabolism -- 1 Introduction -- 2 Algal Lipids -- 2.1 Polar Glycerolipids -- 2.1.1 Phosphoglycerides -- 2.1.2 Glycosylglycerides -- 2.1.3 Betaine Lipids -- 2.1.3.1 Role of Polar Glycerolipids and Their Fatty Acids in Photosynthesis -- 2.2 Non-polar Storage Lipids -- 2.2.1 Triacylglycerols -- 2.2.2 Hydrocarbons -- 3 Biosynthesis of Glycerolipids -- 3.1 Fatty Acid and Polar Glycerolipid Biosynthesis -- 3.2 Biosynthesis of TAG -- 4 Factors Affecting Lipid Composition and Lipid Productivity of Algae -- 4.1 General Growth Conditions -- 4.1.1 Temperature -- 4.1.2 Light -- 4.1.3 Salt Concentrations -- 4.1.4 pH -- 4.1.5 Nutrients -- 5 Conclusion and Future Directions -- References -- 3: Hydrogenases, Nitrogenases, Anoxia, and H2 Production in Water-Oxidizing Phototrophs -- 1 Introduction -- 2 Structure, Function and Maturation of H2 -Producing Enzymes -- 3 [FeFe]-Hydrogenase Occurrence and Diversity -- 4 [FeFe]-Hydrogenase Structure and Function -- 5 [FeFe]-Hydrogenase Maturation -- 6 [NiFe]-Hydrogenase Phylogeny -- 7 [NiFe]-Hydrogenase Structure and Function -- 8 [NiFe]-Hydrogenase Maturation -- 9 Nitrogenase Genetic Diversity -- 10 Nitrogenase Structure and Function -- 11 Nitrogenase Maturation and FeMo-Cofactor Biosynthesis -- 12 Hydrogen Production in Phototrophic Organisms. , 13 Hydrogenase Activity in Eukaryotic Phototrophs -- 13.1 Hydrogen Production Pathways -- 13.2 Hydrogen Utilization Pathways -- 13.3 Hydrogen Production During Sulfur Deprivation -- 13.4 Hydrogenase Transcriptional Regulation -- 13.5 Hydrogenase Oxygen Sensitivity -- 13.6 Hydrogenase Activity Modulation -- 13.7 Fermentative Metabolism in C. reinhardtii -- 13.8 Genomics and Systems Biology in C. reinhardtii -- 14 Hydrogen Production in Cyanobacteria -- 14.1 Intrinsic Factors Studies -- 15 Engineering Approaches for Improved H2 Production -- 16 Glucose Oxidation for H2 Production -- 17 Outlook -- References -- 4: Species and Strain Selection -- 1 Introduction -- 2 Species and Strain Characteristics -- 2.1 Optimum Temperature and Temperature Tolerance -- 2.2 Carbon Supply, pH and Oxygen Tolerance -- 2.3 Respiration Rate -- 2.4 Salinity -- 2.5 Morphology -- 2.6 'Competitive' Strains -- 2.7 Lipid Composition and Quality -- 2.8 Co-products -- 3 Species or Strain? -- 4 Strain Selection In Situ -- 5 A Rapid Screening Approach -- 6 Strain Improvement -- 7 Maintenance of Cultures -- 8 Conclusion -- References -- 5: Limits to Phototrophic Growth in Dense Culture: CO2 Supply and Light -- 1 Introduction -- 2 Intrinsic Limitations to Growth -- 3 The End Product of Metabolism and the Production of Secondary Metabolites Can Impact on Growth Rate -- 4 Light Is Attenuated Exponentially in Cultures, So Is Potentially Growth Limiting -- 5 Diffusive Entry of CO2 Is Not Necessarily Limiting Under Air-Equilibrated Conditions, But Can Rapidly Become Limiting in Dense Cultures -- 6 The Kinetic Characteristics of Rubisco Potentially Limit Inorganic Carbon Acquisition Under Air-Equilibrated Conditions -- References -- 6: Genetic Engineering to Improve Algal Biofuels Production -- 1 Introduction. , 2 Tools and Techniques for Chlamydomonas reinhardtii Genetic Engineering -- 2.1 Chloroplast Engineering -- 2.1.1 The Chloroplast -- 2.1.2 Chloroplast Transformation -- 2.1.3 Translational and Transcriptional Control of Transgenes -- 2.1.4 Selection -- 2.1.5 Generating Stable Homoplasmic Lines -- 2.1.6 Chloroplasts as Protein Factories -- 2.2 Nuclear Engineering -- 2.2.1 The Nuclear Genome -- 2.2.2 Nuclear Transformation -- 2.2.3 Translational and Transcriptional Control of Transgenes -- 2.2.4 Selection -- 2.2.5 Expression of Foreign Genes -- 2.2.6 Gene Silencing in the Green Alga Chlamydomonas reinhardtii -- 3 Genetic Engineering of Other Algae -- 3.1 Green Algae -- 3.2 Diatoms -- 3.3 Dinoflagellates -- 3.4 Red Algae -- 3.5 Plastid Transformation -- 3.6 Inducible Systems -- 3.7 Riboswitches -- 4 Metabolic Engineering of Microalgae -- 4.1 Enhanced Lipid Production -- 4.2 Enhanced Hydrogen Production -- 4.3 Light-Harvesting Antennae Engineering -- 4.4 Trophic Conversion -- 4.5 Metabolic Engineering of Carotenoids -- 5 Other Areas Appropriate for Genetic Engineering for Algal Biofuels Production -- 5.1 Crop Protection -- 5.2 Co-Products -- 5.3 Altered Metabolic Profiles -- 5.4 Improved Harvestability -- 5.5 Improved Nutrient Utilization and Recycling -- 6 Concluding Remarks -- References -- 7: Photobioreactors for Microalgal Biofuel Production -- 1 Introduction -- 2.1 Flat Photobioreactors -- 2.2 Tubular Photobioreactors -- 2.3 Innovative Concepts -- 3 Energy Needs for Algae Biomass Production in a Disposable Panel Reactor -- 4 Economics of Algae Biofuel Production -- 5 Conclusions -- References -- 8: Open Pond Culture Systems -- 1 Introduction -- 2 Shallow Lagoons and Ponds -- 3 Inclined Systems -- 4 Circular Central-Pivot Ponds -- 5 Mixed Ponds -- 6 Raceway Ponds -- 6.1 Paddle-Wheels. , 6.2 Air-Lifts, Archimedes Screws, Propellers and Water Jets -- 7 Culture Management -- 7.1 CO2 Addition -- 7.2 Optimising Productivity -- 7.3 Management and Control of Contaminating Organisms -- 7.4 Recycling of the Medium -- 7.5 Using Waste Water -- 7.6 Productivity of Outdoor Open Pond Systems -- 8 Conclusion -- References -- 9: Wastewater Treatment and Algal Biofuel Production -- 1 Introduction -- 2 Wastewater Treatment Ponds -- 2.1 High Rate Algal Ponds -- 2.2 Algal Production in HRAPs -- 2.3 Algal Grazers and Pathogens -- 3 Wastewater Treatment in HRAPs -- 3.1 Aerobic Treatment -- 3.2 Nutrient Removal -- 3.3 Disinfection -- 4 Wastewater Treatment HRAP Design -- 5 Harvest of Wastewater Treatment HRAP Algae -- 6 Economic and Environmental Benefits of Wastewater Treatment HRAP Algal Production -- 7 Wastewater Algal Biofuel Production -- 7.1 Biogas Methane -- 7.2 Biodiesel -- 7.3 Bioethanol -- 7.4 Bio-Crude Oil -- 7.5 Other Algal Uses -- 7.5.1 Feeds -- 7.5.2 High Value Products -- 8 Greenhouse Gas (GHG) Emission Abatement -- 8.1 Offset Equivalent Fossil Fuel Use GHG Emissions -- 8.2 Reduced CO2 Emissions from Wastewater Treatment Through Lower Electricity Use -- 9 Fertiliser Recovery -- 10 Conclusions -- References -- 10: Harvesting, Thickening and Dewatering Microalgae Biomass -- 1 Introduction -- 2 Coagulation and Flocculation -- 2.1 Inorganic (Chemical) Coagulation and Flocculation -- 2.2 Organic (Chemical) Coagulation and Flocculation -- 2.3 Autoflocculation -- 2.4 Bioflocculation -- 2.5 Ultrasound -- 2.6 Electrocoagulation -- 2.7 Flocculation Summary -- 3 Liquid Constrained Systems -- 3.1 Sedimentation -- 3.1.1 Gravity Thickeners -- 3.1.2 Enhanced Gravity Sedimentation -- 3.2 Centrifugation -- 3.3 Flotation -- 3.3.1 Dispersed Air Flotation -- 3.3.2 Dissolved Air Flotation (DAF). , 3.3.3 Suspended Air Flotation (SAF) -- 3.3.4 Auto otation -- 4 Particle Constrained Systems -- 4.1 Filtration -- 4.1.1 Filter Presses -- 4.1.2 Tangential (Cross) Flow Filtration -- 4.1.3 Gravity Belt Filters -- 4.1.4 Combined Gravity Belt Thickener and Dewatering -- 4.1.5 Vacuum Filters (Rotary Drum) -- 4.1.5.1 Mechanical Presses -- 4.1.6 Linear Electro-dewatering (EDW) -- 4.1.7 Filtration Summary -- 4.2 Attachment -- 4.3 Drying -- 4.4 Process Equipment Selection -- 4.4.1 Laboratory Testing -- 4.4.2 Specification and Shortlist -- 4.4.3 Pilot-Plant and Computer Simulation -- 4.4.4 Scale-Up, Construction and Operational Considerations -- 4.5 Conclusion -- References -- 11: Solvent Extraction for Microalgae Lipids -- 1 Introduction -- 2 Thermodynamics of Solvent Extraction -- 3 Ideal Solvent Characteristics -- 4 Cell Wall and Plasma Membrane of Microalgae -- 5 Biomass Pretreatment -- 6 Extraction of Lipid from Microalgae -- 7 Lipid Fractionation -- 8 Lipid Extraction from Dry Microalgae Biomass -- 9 Fatty Acid Extraction by Direct Saponification of Dry Microalgae Biomass -- 10 Optimization of Lipid and Fatty Acid Extraction from Paste Microalgae Biomass -- 11 Fractionation of Fatty Acids -- 12 Direct Transesterification of Wet Biomass for Producing Fatty Acid Methyl Esters (FAMEs) -- 13 Case Study -- 14 Concluding Remarks -- References -- 12: Production and Properties of Biodiesel from Algal Oils -- 1 Introduction -- 2 General Aspects of Biodiesel -- 2.1 Biodiesel Production. General Aspects -- 2.2 Biodiesel Production from Algae -- 2.3 Fatty Acid Profile and Fuel Properties of Biodiesel. General Aspects -- 2.3.1 Cetane Number and Combustion -- 2.3.2 Kinematic Viscosity -- 2.3.3 Oxidative Stability -- 2.3.4 Cold Flow -- 2.3.5 Summary. , 2.4 Fatty Acid Profiles of Algae-Derived Biodiesel and Effect on Fuel Properties.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...