GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-29
    Description: The mechanism for the upscale growth of small errors through the atmospheric mesoscales has not been conclusively identified, but geostrophic adjustment in response to diabatically generated motions such as cumulus convection is a plausible candidate. In a companion paper, an analytic solution of the linearised, hydrostatic Boussinesq equations to an impulsive, localised heat source that mimics the effect of latent heating within a convective cloud on an unperturbed, rotating environment is found. Three characteristics of the solution are shown to be potentially useful for identifying the geostrophic adjustment process in numerical simulations. The predictions relate to the horizontal gravity wave speed, the Rossby number and the quantitative relationship between a precipitation anomaly and the balanced flow response (i.e. large-scale vorticity). Here these predictions are tested in the framework of error growth experiments in idealised numerical simulations of a convective cloud field. Three different rotation rates are employed in order to identify the geostrophic adjustment mechanism and allow a quantitative comparison with the predictions of the analytic model. The gravity wave speed estimated from the simulations resembles the theoretical value and is independent of the Coriolis parameter, as predicted. The Rossby number resulting from the proposed scaling of temporal and spatial coordinates features a unique shape and the vorticity diagnostic agrees quantitatively with the analytical predictions. Based on these findings it is put forward that upscale error growth through the atmospheric mesoscales is governed by the geostrophic adjustment process.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...