GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-14
    Description: IJGI, Vol. 6, Pages 248: A Generalized Additive Model Combining Principal Component Analysis for PM2.5 Concentration Estimation ISPRS International Journal of Geo-Information doi: 10.3390/ijgi6080248 Authors: Shuang Li Liang Zhai Bin Zou Huiyong Sang Xin Fang As an extension of the traditional Land Use Regression (LUR) modelling, the generalized additive model (GAM) was developed in recent years to explore the non-linear relationships between PM2.5 concentrations and the factors impacting it. However, these studies did not consider the loss of information regarding predictor variables. To address this challenge, a generalized additive model combining principal component analysis (PCA–GAM) was proposed to estimate PM2.5 concentrations in this study. The reliability of PCA–GAM for estimating PM2.5 concentrations was tested in the Beijing-Tianjin-Hebei (BTH) region over a one-year period as a case study. The results showed that PCA–GAM outperforms traditional LUR modelling with relatively higher adjusted R2 (0.94) and lower RMSE (4.08 µg/m3). The CV-adjusted R2 (0.92) is high and close to the model-adjusted R2, proving the robustness of the PCA–GAM model. The PCA–GAM model enhances PM2.5 estimate accuracy by improving the usage of the effective predictor variables. Therefore, it can be concluded that PCA–GAM is a promising method for air pollution mapping and could be useful for decision makers taking a series of measures to combat air pollution.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...