GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-02
    Description: Understanding the thermodynamics of liquid silicates at high pressure and temperature is essential for many petrologic problems, and sodium aluminosilicates are an important component of most magmatic systems. We provide a high-pressure equation of state (EOS) for liquid NaAlSi 3 O 8 based upon molecular dynamics (MD) simulations. The resulting thermodynamic properties have changes in pressure and temperature correlative to trends in diffusion and atomic structure, giving insight to the connections between macroscopic and microscopic properties. Internal pressure shows a maximum in attractive interatomic forces at low pressure, giving way to the dominance of repulsive forces at higher pressure. Self-diffusion coefficients ( D ) typically order D Na 〉 D Al 〉 D O 〉 D Si . At the lowest temperature, self-diffusivity (anomalously) increases as pressure increases up to ~5–6 GPa for Al, Si, and O. Diffusion data outside this "anomalous" region are fit by a modified Arrhenius expression, from which activation energies are calculated: 85 kJ/mol (Na) to 140 kJ/mol (Si). The amount of AlO 4 and SiO 4 polyhedra (tetrahedra) decreases upon compression and is approximately inversely correlated to the abundance of five- and sixfold structures. Average coordination numbers for Al-O, O-O, and Na-O polyhedra increase sharply at low pressure but start to stabilize at higher pressure, corresponding to changes in interatomic repulsion forces as measured by the internal pressure. High-pressure repulsion also correlates with a close-packed O-O structure where ~12 O atoms surround a central O. Self-diffusivity stabilizes at higher pressures as well. Relationships between the internal pressure, self-diffusion, and structural properties illustrate the link between thermodynamic, transport, and structural properties of liquid NaAlSi 3 O 8 at high pressure and temperature, shedding light on how microscopic structural changes influence macroscopic properties in molten aluminosilicates.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...