GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-21
    Description: Motivation: Membrane proteins are clinically relevant, yet their crystal structures are rare. Models of membrane proteins are typically built from template structures with low sequence identity to the target sequence, using a sequence-structure alignment as a blueprint. This alignment is usually made with programs designed for use on soluble proteins. Biological membranes have layers of varying hydrophobicity, and membrane proteins have different amino-acid substitution preferences from their soluble counterparts. Here we include these factors into an alignment method to improve alignments and consequently improve membrane protein models. Results: We developed Membrane Protein Threader (MP-T), a sequence-structure alignment tool for membrane proteins based on multiple sequence alignment. Alignment accuracy is tested against seven other alignment methods over 165 non-redundant alignments of membrane proteins. MP-T produces more accurate alignments than all other methods tested ( F M from +0.9 to +5.5%). Alignments generated by MP-T also lead to significantly better models than those of the best alternative alignment tool (one-fourth of models see an increase in GDT_TS of ≥4%). Availability: All source code, alignments and models are available at http://www.stats.ox.ac.uk/proteins/resources Contact: deane@stats.ox.ac.uk Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...