GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres, 124(9), (2019): CP3-4861, doi: 10.1029/2018JD028853.
    Description: We investigate the impacts of westward wind events on the Red Sea evaporation using the 35‐year second Modern‐Era Retrospective analysis for Research and Applications reanalysis and a 2‐year‐long record of in situ observations from a heavily instrumented air‐sea interaction mooring. These events are common during boreal winter, and their effects are similar to cold‐air outbreaks that occur in midpolar and subpolar latitudes. They cause extreme heat loss from the sea, which is dominated by latent heat fluxes. Different from cold‐air outbreaks, the intensified heat loss is due to the low relative humidity as we show through latent heat flux decomposition. Rainfall is negligible during these events, and we refer to them as dry‐air outbreaks. We also investigate the general atmospheric circulation pattern that favors their occurrence, which is associated with an intensified Arabian High at the north‐central portion of the Arabian Peninsula—a feature that seems to be an extension of the Siberian High. The analyses reveal that the westward winds over the northern Red Sea and the winter Shamal winds in the Persian Gulf are very likely to be part of the same subsynoptic‐scale feature. The second Modern‐Era Retrospective analysis for Research and Applications reanalysis indicates that the occurrence of westward wind events over the northern Red Sea has grown from 1980 to 2015, especially the frequency of large‐scale events, the cause of which is to be investigated. We hypothesize that dry‐air outbreaks may induce surface water mass transformation in the surface Red Sea Eastern Boundary Current and could represent a significant process for the oceanic thermohaline‐driven overturning circulation.
    Description: We thank the three anonymous reviewers and the associated editor who provided valuable comments that contributed to the improvement of the present paper. We wish to acknowledge the use of the Ferret program (NOAA/PMEL) and NCL (doi: 10.5065/D6WD3XH5) for analysis and graphics in this paper. We thanks Julie Hildebrandt for helping with the final manuscript version, Marcio Vianna for fruitful discussion about this work, and Stephen Swift for pointing out the long time series from Yenbo and Wejh at the National Climatic Data Center (NCDC/NOAA). We acknowledge the Global Modeling and Assimilation Office (GMAO) and the Goddard Earth Sciences Data and Information Services Center (GESDISC) for the dissemination of MERRA‐2 reanalysis and the NCDC/NOAA for making the Global Surface Summary of the Day freely and easily available on the internet. MERRA‐2 and QuikSCAT winds at 25 and 12.5 km data are available online (https://disc.gsfc.nasa.gov/datareleases/merra_2_data_release; www.remss.com/missions/qscat/; and https://podaac.jpl.nasa.gov, respectively). The in situ data from the WHOI/KAUST mooring is available at a WHOI repository (http://uop.whoi.edu/projects/kaust/form.php) and provided solely for academic and research purposes. The mooring data collected during the WHOI‐KAUST collaboration was made possible by award USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. This work was supported by NSF grant OCE‐1435665 and NASA grant NNX14AM71G.
    Description: 2019-10-01
    Keywords: Latent heat flux ; Heat loss ; Outbreak ; Saudi Arabian High ; MERRA‐2 ; Shamal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...