GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 2939-2947 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: This article discusses the design and construction of guarded hot plate instruments for measuring the heat flow through an evacuated space between plane-parallel glass surfaces. In this structure, the insulating region is surrounded by two pieces of relatively highly conducting material. High resolution measurements of heat flow using these instruments therefore requires the detection of quite small temperature differences (10−4 K) between the metering piece and the guard. The instruments are calibrated, and the linearity evaluated, by measuring radiative heat transfer through the evacuated space between uncoated soda lime glass sheets; this is because this heat flow can be calculated to high accuracy from the infrared optical properties of the glass. The level of parasitic heat flow in the instruments is estimated by measuring radiative heat flow between glass surfaces coated with very low emittance layers, such as evaporated gold. These instruments operate over a range of temperatures from 0 to about 70 °C. It is shown that the heat flow between evacuated glass surfaces can be measured with these instruments to high resolution (∼10 μW) and high accuracy (∼1%) over an area of ∼1 cm2. The departures from linearity, and the level of parasitic heat flow, are within the measurement resolution. For a temperature difference across the sample of 20 K, the measurement resolution corresponds to an uncertainty in the thermal conductance of the sample of ∼0.005 W m−2 K−1. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...