GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-02-07
    Beschreibung: Highlights • full constitutive model parameter set of marine soil for MCC. • workflow for studies of potential trigger mechanisms exemplified by marine gas occurrence. • quantitative estimation of slope stability (by FOS) on the Balearic Promontory. • Gassy soil can be considered a preconditioning factor, not a trigger mechanism. Abstract The destructive potential of submarine landslides for populated coastal areas and maritime infrastructure has been described many times. However, the geological processes that can trigger such landslide events have not yet been fully established. In order to be able to conclusively assess the trigger potential of these processes, a quantification of the slope stability is indispensable. This requires a precise knowledge of the geotechnical and geological boundary conditions before and after the investigated landslide event, as well as the change in these boundary conditions caused by the alleged trigger mechanism. In order to make these described preconditions and the work process generally applicable, a universally adaptable methodology for the identification of trigger mechanisms was developed. Here it is successfully applied to marine gas occurrence, which has recently been considered as a trigger mechanism due to the negative influence of enclosed gas bubbles on the shear strength of fine-grained soils. The constitutive model by Sultan and Garziglia (2014) is applied to simulate the gas-influenced undrained shear strength of a marine soil from a sediment starved margin on the Balearic Promontory and a range of Finite Element Limit Analyses (FELA) are conducted to determine the resulting loss of stability of different slope geometries. Within the scope of these calculations, the first set of Modified Cam Clay model parameters for a soil from the western Mediterranean is introduced. Based on the simulations, it can be concluded that marine gas occurrence decreases the overall stability of a slope compared to the saturated state. However, it also becomes obvious that the prevailing slope geometries with low inclinations are stable with a substantial capacity reserve for all simulated scenarios. Conclusively, gassy soil can be designated as a preconditioning factor decreasing the slope stability, as the state of failure can only be reached if the slope was in a precarious state before, or in combination with other impacts.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...