GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2023
    In:  Acta Physica Sinica Vol. 72, No. 2 ( 2023), p. 024303-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 72, No. 2 ( 2023), p. 024303-
    Abstract: In order to simulate the acoustic cavitation process of double-bubble coupling, based on the fluid dynamics governing equation and fluid volume fraction model, this paper proposes a three-dimensional finite element simulation model of double-bubble coupled ultrasonic cavitation in Fluent software, and numerically simulates the dynamic process of double-bubble coupled acoustic cavitation in fluid driven by ultrasonic wave. The nonlinear dynamic characteristics of coupled acoustic cavitation with double bubbles are studied by evaluating the variation of the acoustic field around the cavitation bubble. The results indicate that under the ultrasonic drive, the spherical bubbles gradually widen first to the maximal radius, then shrink swiftly, and finally collapse. There is an interaction force between the paired double bubbles, which inhibits the expansion of cavitation bubbles and increases the bubble contraction time. The ability of the cavitation bubble to converse the energy is strengthened in the contraction stage. Compared with the acoustic cavitation of the single bubble, the pressure inside the bubble is expanded when the coupled double bubble collapses. The analysis results in this paper will provide the reference for the dynamic process simulation of the ultrasonic cavitation bubbles.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...