GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Geoscientific Model Development Vol. 13, No. 9 ( 2020-09-09), p. 4159-4181
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 9 ( 2020-09-09), p. 4159-4181
    Abstract: Abstract. Climate reanalyses provide a plethora of global atmospheric and surface parameters in a consistent manner over multi-decadal timescales. Hence, they are widely used in many fields, and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets, and to help guide their development. Recently, the European Centre for Medium-Range Weather Forecasts (ECMWF) released the new state-of-the-art climate reanalysis ERA5, following up on its popular predecessor ERA-Interim. Different sets of variables from ERA5 were already evaluated in a handful of studies, but so far, the quality of land-surface energy partitioning has not been assessed. Here, we evaluate the surface energy partitioning over land in ERA5 and concentrate on the appraisal of the surface latent heat flux, surface sensible heat flux, and Bowen ratio against different reference data sets and using different modelling tools. Most of our analyses point towards a better quality of surface energy partitioning in ERA5 than in ERA-Interim, which may be attributed to a better representation of land-surface processes in ERA5 and certainly to the better quality of near-surface meteorological variables. One of the key shortcomings of the reanalyses identified in our study is the overestimation of the surface latent heat flux over land, which – although substantially lower than in ERA-Interim – still remains in ERA5. Overall, our results indicate the high quality of the surface turbulent fluxes from ERA5 and the general improvement upon ERA-Interim, thereby endorsing the efforts of ECMWF to improve their climate reanalysis and to provide useful data to many scientific and operational fields.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...