GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2012
    In:  Advanced Materials Research Vol. 512-515 ( 2012-5), p. 1499-1502
    In: Advanced Materials Research, Trans Tech Publications, Ltd., Vol. 512-515 ( 2012-5), p. 1499-1502
    Abstract: We investigate glucose oxidase-laccase EFC employing simplified system design – freely suspended enzymes in a membraneless, single chamber cell. The highly specific enzyme reaction mechanisms permit such system design. The EFC comprises nickel mesh as the oxidative current collector and a carbon-based air electrode as the reductive current collector, enclosed in acrylic casing of 3 ml volumetric capacity. The air electrode also serves as the ambient oxygen diffusion site to continuously feed oxygen into the system. The anolyte consists of glucose oxidase enzyme (10 U), glucose substrate (200 mM) and FAD co-enzyme (3.8 mM), while the catholyte consists of laccase enzyme (10 U) and syringaldazine substrate (216 µM). The cell employing citrate buffer electrolyte of pH 5 exhibits the best characteristics i.e. an open circuit voltage (OCV) around 960 mV and able to sustain continuous discharge current of 30µA for about 31.75 hours. The cell possesses volumetric power density of 286 W/cm 3 which is considered comparable to biocatalytic energy systems employing much more complicated design.
    Type of Medium: Online Resource
    ISSN: 1662-8985
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2012
    detail.hit.zdb_id: 2265002-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...