GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainability, MDPI AG, Vol. 12, No. 15 ( 2020-08-03), p. 6224-
    Abstract: To identify key factors that control primary production (P.P.) and trigger cyanobacterial harmful algal blooms (cHABs), we investigated spatio-temporal variations in P.P. in a continuous weir system in the Nakdong River once or twice a month from April to October 2018. P.P. was measured through an in-situ incubation experiment using a 13C tracer. Relative proportion of pigment-based phytoplankton composition was calculated by the CHEMTAX program based on pigment analysis using a high-performance liquid chromatography (HPLC). P.P. was higher in spring (1130 ± 1140 mg C m−2 d−1) and summer (1060 ± 814 mg C m−2 d−1) than autumn (180 ± 220 mg C m−2 d−1), and tended to increase downstream. P.P. was negatively related to PO43− (r = −0.41, p 〈 0.01) due to utilization by phytoplankton during the spring and summer when it was high. The relative proportion of pigment-based cyanobacteria (mainly Microcystis sp.) was positively correlated with water temperature (r = 0.79, p 〈 0.01) and hydraulic retention time (HRT, r = 0.67, p 〈 0.01), suggesting that these two factors should affect cHABs in summer. Therefore, to control HRT could be one of the solutions for reducing cHABs in a continuous weir system.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...