GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Solar, MDPI AG, Vol. 2, No. 2 ( 2022-06-01), p. 293-304
    Abstract: Fully printable carbon-based perovskite solar cells (C-PSCs) represent some of the most promising perovskite solar cell (PSC) architectures. Highly scalable, stable, and low in cost—these devices consist of a TiO2 compact layer (C-TiO2) and three sequentially screen-printed mesoporous layers of TiO2, ZrO2, and carbon, through which perovskite is infiltrated. While there has been remarkable progress in optimizing and scaling up deposition of mesoporous layers and perovskite, few publications have focused on optimizing C-TiO2. In this work, we investigate the potential for substituting commonly used spray pyrolysis with more easily scaled screen-printing. It was found that when comparing layers of similar thickness, 1 cm2 devices fabricated with printed C-TiO2 exhibited similar power conversion efficiency (PCE) to those fabricated with spray pyrolysis. In contrast, thicker-printed C-TiO2 led to lower efficiency. The influence of TiCl4 treatment on the quality of produced compact layers was also examined. This proved beneficial, mostly in the printed films, where a champion PCE of 13.11% was attained using screen-printed, TiCl4 treated C-TiO2. This work proves that screen-printing is a viable replacement for spray pyrolysis in C-PSCs fabrication.
    Type of Medium: Online Resource
    ISSN: 2673-9941
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 3136511-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...