GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sensors Vol. 22, No. 22 ( 2022-11-14), p. 8777-
    In: Sensors, MDPI AG, Vol. 22, No. 22 ( 2022-11-14), p. 8777-
    Abstract: Deformation-rate distributed acoustic sensing (DAS), made available by the unique designs of certain interrogator units, acquires seismic data that are theoretically equivalent to the along-fiber particle velocity motion recorded by geophones for scenarios involving elastic ground-fiber coupling. While near-elastic coupling can be achieved in cemented downhole installations, it is less obvious how to do so in lower-cost horizontal deployments. This investigation addresses this challenge by installing and freezing fiber in shallow backfilled trenches (to 0.1 m depth) to achieve improved coupling. This acquisition allows for a reinterpretation of processed deformation-rate DAS waveforms as a “filtered particle velocity” rather than the conventional strain-rate quantity. We present 1D and 2D filtering experiments that suggest 2D velocity-dip filtering can recover improved DAS data panels that exhibit clear surface and refracted arrivals. Data acquired on DAS fibers deployed in backfilled, frozen trenches were more repeatable over a day of acquisition compared to those acquired on a surface-deployed DAS fiber, which exhibited more significant amplitude variations and lower signal-to-noise ratios. These observations suggest that deploying fiber in backfilled, frozen trenches can help limit the impact of environmental factors that would adversely affect interpretations of time-lapse DAS observations.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...