GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sensors Vol. 22, No. 11 ( 2022-06-01), p. 4217-
    In: Sensors, MDPI AG, Vol. 22, No. 11 ( 2022-06-01), p. 4217-
    Abstract: Micro-direct-methanol fuel cells (μDMFCs) use micro-electro mechanical system (MEMS) technology, which offers high energy density, portable use, quick replenishment, and free fuel reforming and purification. However, the μDMFC is limited by a short effective service life due to the membrane electrode’s deterioration in electrochemical reactions. This paper presents a health status assessment and remaining useful life (RUL) prediction approach for μDMFC under dynamic operating conditions. Rather than making external observations, an internal characterization is used to describe the degradation indicator and to overcome intrusive influences in operation. Then, a Markov-process-based usage behavior prediction mechanism is proposed to account for the randomness of real-world operation. The experimental results show that the proposed degradation indicator alleviates the reduction in μDMFC output power degradation behavior caused by the user loading profile. Compared with the predictions of RUL using traditional external observation, the proposed approach achieved superior prognostic performance in both accuracy and precision.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...