GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 13, No. 18 ( 2021-09-08), p. 3567-
    Abstract: Light Use Efficiency (LUE), Vegetation Index (VI)-based, and process-based models are the main approaches for spatially continuous gross primary productivity (GPP) estimation. However, most current GPP models overlook the effects of topography on the vegetation photosynthesis process. Based on the structures of a two-leaf LUE model (TL-LUE), a VI-based model (temperature and greenness, TG), and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS), three models, named mountain TL-LUE (MTL-LUE), mountain TG (MTG), and BEPS-TerrainLab, have been proposed to improve GPP estimation over mountainous areas. The GPP estimates from the three mountain models have been proven to align more closely with tower-based GPP than those from the original models at the site scale, but their abilities to characterize the spatial variation of GPP at the watershed scale are not yet known. In this work, the GPP estimates from three LUE models (i.e., MOD17, TL-LUE, and MTL-LUE), two VI-based models (i.e., TG and MTG), and two process-based models (i.e., BEPS and BEPS-TerrainLab) were compared for a mountainous watershed. At the watershed scale, the annual GPP estimates from MTL-LUE, MTG, and BTL were found to have a higher spatial variation than those from the original models (increasing the spatial coefficient of variation by 6%, 8%, and 22%), highlighting that incorporating topographic information into GPP models might improve understanding of the high spatial heterogeneity of the vegetation photosynthesis process over mountainous areas. Obvious discrepancies were also observed in the GPP estimates from MTL-LUE, MTG, and BTL, with determination coefficients ranging from 0.02–0.29 and root mean square errors ranging from 399–821 gC m−2yr−1. These GPP discrepancies mainly stem from the different (1) structures of original LUE, VI, and process models, (2) assumptions associated with the effects of topography on photosynthesis, (3) input data, and (4) values of sensitive parameters. Our study highlights the importance of considering surface topography when modeling GPP over mountainous areas, and suggests that more attention should be given to the discrepancy of GPP estimates from different models.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...