GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Polymers Vol. 13, No. 13 ( 2021-06-29), p. 2147-
    In: Polymers, MDPI AG, Vol. 13, No. 13 ( 2021-06-29), p. 2147-
    Abstract: Polyethylene (PE) plastomers, single-site catalyst-based homogeneous linear low-density PEs (LLDPEs), combine low crystallinity, softness, and elasticity, making them ideal candidates for numerous applications such as hot-melt adhesives (HMA). As plastomers crystallize rather slowly, a number of possible low molecular weight polyolefin components were tested to accelerate solidification. An ideal modifier should accelerate solidification while maintaining transparency and softness of the base polymer. A Queo plastomer type was modified with different PE and PP waxes at concentrations of 5 to 25 wt.-%. Next to conventional calorimetry, a rheological technique was applied to study solidification. The resulting morphology was studied by atomic force microscopy, and the final compositions were investigated regarding their mechanical and optical performance. Accelerated solidification was observed in all cases, but a quite different course of structure formation could be concluded. PE waxes dissolve in the melt state, forming a lamellar network during cooling, whereas PP waxes form a heterogeneous blend in the melt for which the wax droplets solidify before the matrix. The particulate-type modification by the PP wax also affects stiffness less while retaining transparency better.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...