GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nanomaterials, MDPI AG, Vol. 8, No. 7 ( 2018-07-14), p. 532-
    Abstract: Calcium fluoride (CaF2) nanoparticles with various terbium (Tb) doping concentrations were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and alternating current (AC) impedance measurement. The original shape and structure of CaF2 nanoparticles were retained after doping. In all the samples, the dominant charge carriers were electrons, and the F− ion transference number increased with increasing Tb concentration. The defects in the grain region considerably contributed to the electron transportation process. When the Tb concentration was less than 3%, the effect of the ionic radius variation dominated and led to the diffusion of the F− ions and facilitated electron transportation. When the Tb concentration was greater than 3%, the increasing deformation potential scattering dominated, impeding F− ion diffusion and electron transportation. The substitution of Ca2+ by Tb3+ enables the electron and ion hopping in CaF2 nanocrystals, resulting in increased permittivity.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...