GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Mathematics, MDPI AG, Vol. 11, No. 6 ( 2023-03-20), p. 1503-
    Abstract: The predictions from time series data can help us sense development trends and make scientific decisions in advance. The commonly used forecasting methods with backpropagation consume a lot of computational resources. The deep echo state network (DeepESN) is an advanced prediction method with a deep neural network structure and training algorithm without backpropagation. In this paper, a Bayesian optimization algorithm (BOA) is proposed to optimize DeepESN to address the problem of increasing parameter scale. Firstly, the DeepESN was studied and constructed as the basic prediction model for the time series data. Secondly, the BOA was reconstructed, based on the DeepESN, for optimal parameter searching. The algorithm is proposed within the framework of the DeepESN. Thirdly, an experiment was conducted to verify the DeepESN with a BOA within three datasets: simulation data generated from computer programs, a real humidity dataset collected from Beijing, and a power load dataset obtained from America. Compared with the models of BP (backpropagation), LSTM (long short-term memory), GRU (gated recurrent unit), and ESN (echo state network), DeepESN obtained optimal results, which were 0.0719, 18.6707, and 764.5281 using RMSE evaluation. While getting better accuracy, the BOA optimization time was only 323.4 s, 563.2 s, and 9854 s for the three datasets. It is more efficient than grid search and grey wolf optimizer.
    Type of Medium: Online Resource
    ISSN: 2227-7390
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704244-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...