GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Materials, MDPI AG, Vol. 16, No. 3 ( 2023-01-25), p. 1052-
    Kurzfassung: During underground space exploitation in the urbanization process, numerous foundation pits were constructed where a diaphragm wall was often used as a retaining structure and waterproof curtain. Due to complicated engineering geological conditions or improper construction, diaphragm walls and wall joints often exhibit quality defects. Groundwater leaked from these quality defects to foundation pits during excavation, endangering the safety of the pit and surrounding facilities. The current leakage identification of the underground retaining structure was performed by artificial visual detection, which cannot satisfy the engineering requirement. The temperature field in the leakage area of the diaphragm wall was different from other areas. The leakage wall imaging system using a thermal imager was efficient in visualizing leaking, which was not visible to the naked eye. In this study, infrared thermal imaging technology was introduced in potential leakage detection for the diaphragm wall of a foundation pit. The infrared radiation characteristics of the diaphragm wall leakage and the potential leakage parts were studied through laboratory simulation tests and on-site detection methods. The maximum temperature appeared at the water outlet and the surface of the defect with hidden defect, and the temperature field was symmetrically distributed along the cross-section direction. In the potential leakage area, the temperature difference at the penetration point was 23.4 °C when the initial water pressure was 10 kPa. The temperature difference at the penetration point was 21.8 °C when the initial water pressure was 30 kPa. In the field test, the maximum temperature difference between the leakage area and the surrounding wall was 4.5 °C. The study can provide a reference for similar engineering.
    Materialart: Online-Ressource
    ISSN: 1996-1944
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2487261-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...