GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Imaging, MDPI AG, Vol. 8, No. 6 ( 2022-05-31), p. 156-
    Abstract: We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford–Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford–Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index 〉 90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.
    Type of Medium: Online Resource
    ISSN: 2313-433X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2824270-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...