GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Energies, MDPI AG, Vol. 12, No. 13 ( 2019-06-29), p. 2513-
    Abstract: This paper presents a numerical investigation of ignition and combustion stabilization of a novel design of a solid-fuel ramjet (SFRJ) motor with and without swirl flow. The proposed design includes two solid fuels, retaining the simple design of the classic SFRJ. Numerical simulations of unsteady, turbulent, reactive, and swirling flow coupled with solid-fuel pyrolysis have been performed using an in-house CFD solver. Experiments on SFRJ were conducted via a connected-pipe test facility to validate the developed code. Furthermore, the code was validated for chemical reactions, heat diffusion, and swirl flow by using benchmark test cases of shock-induced, semi-infinite plate, and dump combustor with swirl flow, respectively. Then, the proposed and classic designs were simulated for the same inflow conditions and configurations, and the results were analyzed and discussed. It is found that the mixing degree, reactant residence time, mass flux, ignition delay time, and regression rate improve when using the proposed design. Moreover, the proposed design reveals interesting observations of a new flame being created and merged with the main flame.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...