GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Colloids and Interfaces, MDPI AG, Vol. 2, No. 2 ( 2018-05-06), p. 19-
    Abstract: An efficient process was developed allowing the removal of metal ions from polycontaminated aqueous solutions by combining modified colloids and membranes. Firstly, filtration experiments were performed using polyethersulfone membranes modified by a self-assembled multilayer film of polyelectrolytes. These polymer-modified membranes allowed the uptake of more than 90% of the metal ions initially present in the contaminated solutions (for solutions concentrated at 50 mg L−1). Secondly, adsorption experiments were carried out with colloidal silica encapsulated with carboxymethyl chitosan (SiO2-CMCS) or with mesoporous silica functionalized by grafting of 1,4,8,11-tetraazacyclotetradecane, i.e., cyclam (SiO2-cyclam). The adsorption capacity of these compounds was shown to be higher than numerous other literature-known adsorbents, reaching 68 and 61 mg g−1 towards Cu(II) for SiO2-CMCS and SiO2-cyclam, respectively. Finally, by coupling adsorption with ultrafiltration in the tangential mode, the removal of Cu(II), Ni(II) and Zn(II) ions was found to be improved, allowing to reach a removal efficiency of 99% towards Cu(II), Ni(II) and Zn(II) ions at a metal concentration of 50 mg L−1, and a promising removal efficiency around 70% at a very high metal concentration of 1200 mg L−1. The mechanisms involved in the capture of the metal ions by modified membranes and colloids are also discussed.
    Type of Medium: Online Resource
    ISSN: 2504-5377
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2934567-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...